• Title/Summary/Keyword: LCA (Life Cycle Assessment)

Search Result 307, Processing Time 0.025 seconds

A Whole LCA of the Sustainable Aspects of Structural Systems in Tall Buildings

  • Trabucco, Dario;Wood, Antony;Vassart, Olivier;Popa, Nicoletta
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.2
    • /
    • pp.71-86
    • /
    • 2016
  • This paper summarizes the results of a two-year-long research project conducted by the CTBUH on the life cycle assessment (LCA) of tall building structural systems. The research project was made possible thanks to a $300,000 contribution from ArcelorMittal and the support of some of the most important structural engineering firms and players in the tall building industry. The research analyzed all life phases of a tall building's structural system: the extraction and production of its materials, transportation to the site, construction operations, final demolition of the building, and the end-of-life of the materials. The impact of the building structure during the operational phase (i.e., impact on daily energy consumption, maintenance, and suitability to changes) was also investigated, but no significant impacts were identified during this phase.

A Comparative Study on the LCA Cases for Power Generation Technologies (발전기술의 LCA 수행사례 비교 연구)

  • Ji, Chul-Goo;Chung, Whan-Sam
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.4
    • /
    • pp.249-265
    • /
    • 2006
  • A life cycle assessment(LCA) is increasing its applicability as a powerful tool for an environmental burdens analysis. In this study, some cases are compared in terms of analysis procedures and results obtained with LCAs for evaluating power generation technologies in Korea. For the comparison, 3 power generation technologies are selected because they produces almost 90% of 2003 total electricity generation in Korea. It is shown that the range of evaluation values amounts to maximally the order of about 105, which is rather large discrepancy than the level of 101 in comparison with foreign studies. The difference seems to be due to the simplicity of modeling used in each case study. It is proposed that this large discrepancy should be obviously clarified to improve their reliability in that electricity is a essentialness for all industries and the capacity of LCA of national-level electricity affects the results of LCA for the other sectors.

Application of LCA Methodology on Lettuce Cropping Systems in Protected Cultivation (시설재배 상추에 대한 전과정평가 (LCA) 방법론 적용)

  • Ryu, Jong-Hee;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.705-715
    • /
    • 2010
  • The adoption of carbon foot print system is being activated mostly in the developed countries as one of the long-term response towards tightened up regulations and standards on carbon emission in the agricultural sector. The Korean Ministry of Environment excluded the primary agricultural products from the carbon foot print system due to lack of LCI (life cycle inventory) database in agriculture. Therefore, the research on and establishment of LCI database in the agriculture for adoption of carbon foot print system is urgent. Development of LCA (life cycle assessment) methodology for application of LCA to agricultural environment in Korea is also very important. Application of LCA methodology to agricultural environment in Korea is an early stage. Therefore, this study was carried out to find out the effect of lettuce cultivation on agricultural environment by establishing LCA methodology. Data collection of agricultural input and output for establishing LCI was carried out by collecting statistical data and documents on income from agro and livestock products prepared by RDA. LCA methodology for agriculture was reviewed by investigating LCA methodology and LCA applications of foreign countries. Results based on 1 kg of lettuce production showed that inputs including N, P, organic fertilizers, compound fertilizers and crop protectants were the main sources of major emission factor during lettuce cropping process. The amount of inputs considering the amount of active ingredients was required to estimate the actual quantity of the inputs used. Major emissions due to agricultural activities were $N_2O$ (emission to air) and ${NO_3}^-$/${PO_4}^-$ (emission to water) from fertilizers, organic compounds from pesticides and air pollutants from fossil fuel combustion in using agricultural machines. The softwares for LCIA (life cycle impact assessment) and LCA used in Korea are 'PASS' and 'TOTAL' which have been developed by the Ministry of Knowledge Economy and the Ministry of Environment. However, the models used for the softwares are the ones developed in foreign countries. In the future, development of models and optimization of factors for characterization, normalization and weighting suitable to Korean agricultural environment need to be done for more precise LCA analysis in the agricultural area.

A Proposal of Life Cycle CO2 Assessment Techniques for Building in Construction Stage by BIM LOD (건설단계 BIM을 이용한 건축물의 전 과정 CO2 평가 기법 제안에 관한 연구)

  • Bang, Jun-Sik;Tae, Sung-Ho;Roh, Seung-Jun;Keum, Won-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.53-54
    • /
    • 2012
  • This study is aimed at utilizing LCA processor with BIM LOD, eliciting the problems of the existing environmental assessment by constructing the database for environmental values of green buildings. For these objects, environmental load database of BIM construction material and evaluation process are presented, after matching BIM family based environmental load database which is available during evaluation stage, input-output tables and Korea LCI database to standard item code of public procurement service. It is a important factor in environmental assessment of building to develop database unit of standard item code for BIM and construction material. Thus, the results of this study are expected to provide basic data for improving effectiveness of construction through BIM based environmental load evaluation database. Furthermore, the provided environmental load database unit for construction material is considered to be available as basic information for BIM study by suggesting a processor connecting BIM with LCA and along with this, continuous examination on the connection process is needed.

  • PDF

A Study on the Estimation Method of the Environmental Load Intensity for Analyzing GHG Reduction Effect of Han-Ok

  • Kim, Sunghee
    • Architectural research
    • /
    • v.15 no.3
    • /
    • pp.143-150
    • /
    • 2013
  • The Korean government recently has rediscovered the potential value of Han-Ok, the Korean traditional house, as an eco-friendly building. In order to objectively verify the environmental performance of Han-Ok as a low carbon green building, this paper suggests the analysis method of GHG emission load of Korean traditional house, based on Life Cycle Assessment, which is commonly abbreviated to "LCA". The environmental impacts caused by building construction and operation can be analyzed through the sum of input and output data from every phase. The study particularly describes the GHG reduction effect by using traditional building materials such as wood products, traditional clay roof tiles, and mud, which are mainly used to construct Han-Ok. Also the study proposes the method for comparative analysis of quantity of GHG emissions in building's entire life cycle so that the data can be used as a reliable basis to optimize the environmental performance of building.

An Analysis of Factors Affecting Environmental Load in Earthwork Type of Road Project (도로건설공사 토공작업부에 대한 환경부하 영향인자 분석)

  • Park, Jin-Young;Im, Je-Gyu;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.4
    • /
    • pp.52-60
    • /
    • 2018
  • In the construction industry, attempts to evaluate the environmental impact of products through life cycle assessment (LCA) approach has been on the rise. However, the domestic construction industry needs to make rapid decisions due to limited budget and schedule, so it is difficult to carry out a review of the environmental load on all resources. The decision-making process requires information on the major influence factors that should be focused on to reduce environmental load. And this information should be quantified so that it can be linked to environmental impact assessment. In this study, the LCA results of road construction cases were analyzed to provide such information. As a result, diesel, ready-mixed concrete, urethane-based paint, aggregate, and asphalt concrete were found to be the main factors that generated 93.17% of the environmental load in the earthwork type of road project. The total environmental cost caused by these affecting factors when constructing 1 km of earthwork type of road project is 242 million won. The analysis also shows that a 10% reduction in the amount of ready-mixed and asphalt concretes can reduce carbon emissions by 5.02% and 2.28% while reducing environmental costs by 11 million won per kilometer. In order to reduce carbon emissions of the earthwork type of road project, it is necessary to actively develop and introduce new methods and eco-friendly materials to reduce the overall use of ready-mixed concrete and asphalt concrete.

Applying a Life-Cycle Assessment to the Ultra Pure Water Process of Semiconductor Manufacturing

  • Tien, Shiaw-Wen;Chung, Yi-Chan;Tsai, Chih-Hung;Yang, Yung-Kuang;Wu, Min-Chi
    • International Journal of Quality Innovation
    • /
    • v.6 no.3
    • /
    • pp.173-189
    • /
    • 2005
  • A life-cycle assessment (LCA) is based on the attention given to the environmental protection and concerning the possible impact while producing, making, and consuming products. It includes all environmental concerns and the potential impact of a product's life cycle from raw material procurement, manufacturing, usage, and disposal (that is, from cradle to grave). This study assesses the environmental impact of the ultra pure water process of semiconductor manufacturing by a life-cycle assessment in order to point out the heavy environmental impact process for industry when attempting a balanced point between production and environmental protection. The main purpose of this research is studying the development and application of this technology by setting the ultra pure water of semiconductor manufacturing as a target. We evaluate the environmental impact of the Precoat filter process and the Cation/Anion (C/A) filter process of an ultra pure water manufacturing process. The difference is filter material used produces different water quality and waste material, and has a significant, different environmental influence. Finally, we calculate the cost by engineering economics so as to analyze deeply the minimized environmental impact and suitable process that can be accepted by industry. The structure of this study is mainly combined with a life-cycle assessment by implementing analysis software, using SimaPro as a tool. We clearly understand the environmental impact of ultra pure water of semiconductor used and provide a promotion alternative to the heavy environmental impact items by calculating the environmental impact during a life cycle. At the same time, we specify the cost of reducing the environmental impact by a life-cycle cost analysis.

Study on the introduction and assessment of the Life Cycle Carbon Emissions in Office Buildings

  • Park, Mincho;Lee, Byeongho;Shin, Sung-Woo
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.49-57
    • /
    • 2014
  • Global warming has become a major issue all over the world. Noting the carbon dioxide emissions as a main contributor to global warming, we studied on the methods to reduce the life cycle building carbon emissions. Green Building Certification Criteria(GBCC) has been implemented since 2002 in Korea, but it doesn't estimate the quantities of the $CO_2$ emissions. Therefore, we studied the ways to implement the $CO_2$ emissions in quantity to GBCC. We select a government building which was rated excellent by the GBCC. This office building was regarded to excellent building by GBCC but not good for energy consumption. It was found energy glutton buildings for research by the Ministry of Public Administration and Security in 2010. This part of GBCC is need to be improved.. Also LCA (Life Cycle assessment) was carried out to estimate on carbon footprint on this office building. So we need to implementing quantitative evaluation on the amount of carbon emissions by GBCC. And it is possible to implementing quantitative evaluation on the amount of carbon emissions. Through this study, we expect that quantitative assessment of life cycle carbon emissions of buildings by the GBCC. Also expect to reduce the carbon emissions of the building by improving the GBCC.

Main Function of RACE Software for Environmental Assessment of Electric Motor Unit (전동차 환경성 진단용 RACE프로그램의 주요기능)

  • Kim, Yong-Ki;Lee, Jae-Young;Seo, Min-Seok;Choi, Yo-Han
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1244-1249
    • /
    • 2007
  • Pursuing sustainable development throughout society and industry and the field of environmental policy, each international organization or nation has performed international standardization projects on environmental management activities for their system as well as environmental assessment for a product such as life cycle assessment (LCA) and life cycle inventory database (LCI DB), and the environmental aspects have been increasingly demanded as crucial evaluation specifications. Moreover, the conventional environmental policy, which represents the direct-control, has been more dependent on the market forces and product itself after the Climate Change Convention., and the Integrated Product Policy (IPP, EU) is applied vigorously to strengthen global competitiveness of a product and to achieve the effect of environmental improvement for it. According to change of the international railway market, the value of Eco-Design has been increasingly important in developed countries including EU. Thus, each country is establishing its own guidelines, software and database for each product, and developing new policies through Eco-Design with practical results in marketing. To react this and develop Korean railway as an environment-friendly industry with priority to other transportation system as well as maintain high place in technology, the direction of RACE software development of main function is introduced, which is exclusively used for EMU to assess both environmental and economic aspects with LCA and eco-efficiency (EE).

  • PDF

Design of Environmentally Sound Manufacturing Process of Fork Lift using LCA and DfE Methodology (LCA와 DfE기법을 이용한 친환경적인 지게차 제조공정의 설계)

  • Park, Kwang-Ho;Hwang, Yong-Woo;Park, Il-Do
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.677-685
    • /
    • 2005
  • Life Cycle Assessment(LCA) and Design for Environment(DfE) method were applied to design the environmentally sound manufacturing process of f31k lift in this study. Not only external movement of LCA and DfE method in the legal and systemic phase, but also active researches of those in the development phase of case study and application to the industrial field, have been going on. In concretely, the manufacturing processes of the folk lift generating the most environmental impact were examined by applying LCA method, and the environmentally sound manufacturing process was designed by applying, DfE method to the processes. As the results of LCA, environmental impacts for the eco-toxicity and human toxicity of seven major environmental categories were in high value, and so be in the cutting & welding process and painting process among the manufacturing processes. High solid paints, increasing the solid content of the existing solvent paints used in painting process, were developed to reduce the environmental impacts generated in the painting process. By utilizing the high solid paints, about 20% of environmental impacts (as environmental index of LCA) could be reduced.