• Title/Summary/Keyword: LC model

Search Result 239, Processing Time 0.04 seconds

Berberine Suppresses Hepatocellular Carcinoma Proliferation via Autophagy-mediated Apoptosis (베르베린을 처리한 간세포암에서 자가포식 경로와 관련된 세포자멸사)

  • Yun Kyu Kim;Myeong Gu Yeo
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.287-295
    • /
    • 2024
  • Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide, necessitating novel therapeutic strategies. The chemotherapeutic agents used to treat HCC patients are toxic and have serious side effects. Therefore, we investigated the efficacy of anticancer drugs that reduce side effects by targeting tumor cells without causing cytotoxicity in healthy hepatocytes. Berberine, an isoquinoline alkaloid derived from plant compounds, has emerged as a potential candidate for cancer treatment due to its diverse pharmacological properties. The effect of berberine on HepG2 cell viability was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay. HepG2 cell proliferation was determined through a colony-forming assay. The effects of berberine on HepG2 cell migration were evaluated using a wound-healing assay. Berberine inhibited the proliferation of HepG2 cells, as well as colony formation and migration. Berberine treatment increased the expression of autophagy-related genes and proteins, including Beclin-1 and LC3-II, and elevated the activities and mRNA expression of Caspase-9 and Caspase-3. Additionally, in experiments utilizing the Cell-Derived Xenograft animal model, berberine treatment reduced tumor size and weight in a concentration-dependent manner. These results demonstrate the potential of berberine as a versatile anticancer agent with efficacy in both cellular and animal models of hepatocellular carcinoma. The findings herein shed light on berberine's efficacy against HCC, presenting opportunities for targeted and personalized therapeutic interventions.

Anti-obesity effects of Glycyrrhiza uralensis ethanol extract on the inhibition of 3T3-L1 adipocyte differentiation in high-fat diet-induced C57BL/6J mice (감초 주정추출물의 3T3-L1 지방세포 분화 억제 및 고지방 식이로 유도된 C57BL/6J 마우스에 대한 항비만 효과)

  • Seon Kyeong Park;Jangho Lee;Soo Hyun Park;Yu Geon Lee
    • Food Science and Preservation
    • /
    • v.30 no.4
    • /
    • pp.716-728
    • /
    • 2023
  • The anti-adipogenic activity of Glycyrrhiza uralensis was investigated by examining the effects of its ethanol extract (GUE) on a mouse model with a high-fat diet (HFD) and 3T3-L1 preadipocytes during adipocyte differentiation. GUE administration for eight weeks significantly reduced weight gain in mice fed an HFD. GUE effectively inhibited 3T3-L1 preadipocyte differentiation and lipid droplet accumulation. This inhibitory effect is associated with the downregulation of key adipogenic regulators, including PPARγ and C/EBPα, and the modulation of adipose metabolism regulators, such as Fasn and Fabp4. LC-Q-TOF-MS analysis identified twelve phenolic and flavonoid compounds, including liquiritigenin and licorice saponin, in the GUE. These findings demonstrate that the anti-obesity effect of the GUE is attributed to the biological activity of its phenolic and flavonoid compounds. Therefore, the GUE has potential anti-obesity activity. Moreover, further studies on the isolation of bioactive components from the GUE and the investigation of the underlying molecular mechanisms of the GUE are required to establish its efficacy in metabolic disorders, including obesity.

LC/MS-based metabolomics approach for selection of chemical markers by domestic production region of Schisandra chinensis (오미자(Schisandra chinensis)의 국내 산지별 화학적마커 선정을 위한 LC/MS 기반의 대사체학 접근법)

  • In Seon Kim;Seon Min Oh;Ha Eun Song;Doo-Young Kim;Dahye Yoon;Dae Young Lee;Hyung Won Ryu
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.467-476
    • /
    • 2023
  • Schisandra chinensis (S. chinensis) is a deciduous broad-leaved cave plant belonging to the Schisandraceae family and is widely distributed in East Asia including Korea, Japan, China, and Taiwan. It has been reported that the main components contained in S. chinensis include lignan compounds and triterpenoid compounds. To distinguish the characteristics of S. chinensis by production region of Korea, a discriminant was established by performing metabolite profiling and principal component analysis, a multivariate statistical analysis technique. As a result, 16 types of triterpenoids, 9 types of lignan, and 1 type each of flavonoid, phenylpropanoid, and fatty acid were identified. In addition, through multivariate statistical analysis, it was confirmed that the four groups in Danyang, Moongyeong, Geochang, and Pyeongchang were divided, by applying the s-plot model of orthogonal partial least squares discriminant analysis. Biomarkers were identified: lanostane, cycloartane, schiartane triterpenoid, and dibenzocyclo-octadiene lignan were identified as chemical markers, respectively.

A Study of Organic Matter Fraction Method of the Wastewater by using Respirometry and Measurements of VFAs on the Filtered Wastewater and the Non-Filtered Wastewater (여과한 하수와 하수원액의 VFAs 측정과 미생물 호흡률 측정법을 이용한 하수의 유기물 분액 방법에 관한 연구)

  • Kang, Seong-wook;Cho, Wook-sang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.58-72
    • /
    • 2009
  • In this study, the organic matter and biomass was characterized by using respirometry based on ASM No.2d (Activated Sludge Model No.2d). The activated sludge models are based on the ASM No.2d model, published by the IAWQ(International Association on Water Quality) task group on mathematical modeling for design and operation of biological wastewater treatment processes. For this study, OUR(Oxygen Uptake Rate) measurements were made on filtered as well as non-filtered wastewater. Also, GC-FID and LC analysis were applied for the estimation of VFAs(Volatile Fatty Acids) COD(S_A) in slowly bio-degradable soluble substrates of the ASM No.2d. Therefore, this study was intended to clearly identify slowly bio-degradable dissolved materials(S_S) and particulate materials(X_I). In addition, a method capable of determining the accurate time to measure non-biodegradable COD(S_I), by the change of transition graphs in the process of measuring microbial OUR, was presented in this study. Influent fractionation is a critical step in the model calibrations. From the results of respirometry on filtered wastewater, the fraction of fermentable and readily biodegradable organic matter(S_F), fermentation products(S_A), inert soluble matter(S_I), slowly biodegradable matter(X_S) and inert particular matter(X_I) was 33.2%, 14.1%, 6.9%, 34.7%, 5.8%, respectively. The active heterotrophic biomass fraction(X_H) was about 5.3%.

  • PDF

Factors Affecting Carbon-Labeling Brand Loyalty : Applying Value-Attitude-Behavior Model (탄소라벨링 브랜드 충성도를 결정하는 요인: 가치태도행동 모형의 적용)

  • Kim, Gwang-Suk;Park, Kyungwon;Park, Kiwan
    • Journal of Environmental Policy
    • /
    • v.13 no.3
    • /
    • pp.109-133
    • /
    • 2014
  • With a growing concern about climate change and green house gases mitigation, carbon labeling policy has been launched in several countries as an environmental policy which connects low carbon production to low carbon consumption. This research aims to propose a model that explains consumers' attitude and brand loyalty toward carbon labeling products. This model specifies the consumer's psychological processes by which consumer values, such as autonomy and environmental values, affect carbon labeling product and corporate images and finally form brand loyalty toward carbon labeling products. Panel data were collected in two separate surveys and analyzed using a structural equation technique. Results are summarized as follows. First, consumers' autonomy value(AV) positively affects locus of control(LC) and corporate image(CI). Second, consumers' environmental value(EV) positively influences perceived consumer effectiveness(PCE), which in turn has a negative effect on perceived barriers(PB). Perceived barriers finally affect product image(PI) negatively. Third, both corporate image and product image have causal relationships with brand loyalty. Our results suggest that carbon labeling policy contributes not only to the reduction of greenhouse gases but also to the increase of consumers' attitude and brand loyalty toward carbon labeling products. This research also provides governments with directions for efficient environmental policy and firms with guidance on effective marketing strategies about carbon labeling.

  • PDF

Analysis of Nutrient Content by Digestion Phase of Legumes using an In Vitro Digestion Model (In Vitro Digestion Model을 활용한 두류 소화 단계별 영양성분 변화 분석)

  • Da Bin Lee;Kyeong A Jang;In Seon Hwang;Min Sook Kang;Mi-Kyung Seo;Haeng Ran Kim;Seon Mi Yoo
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.5
    • /
    • pp.368-378
    • /
    • 2023
  • Changes in contents of free sugars, amino acids, and fatty acids of legumes were analyzed for each phase of in vitro digestion. In addition, contents of resistant starch in raw and digested pulses were compared. Soybeans, kidney beans, cowpeas, and chickpeas were analyzed. An in vitro digestion model was used to analyze contents of nutrients using LC-MS and GC-MS. Stachyose in kidneybean, cowpea, and chickpea increased as the digestion phase progressed. In four types of legumes, raffinose slightly decreased or showed no significant difference between the Oral phase and the BBMV phase. Content of glucose, a monosaccharide, increased during the BBMV phase. During the digestion phase, levels of free amino acids and free fatty acids also increased. Content of resistant starch was reduced compared to that in the raw material. It was 0.01g/100 g food in soybean, 1.06 g/100 g food in red kidney bean, 0.77g/ 100g food in cowpea, and 0.76 g/100 g food in chickpea. It was confirmed that nutrients in the in vitro digestion model were liberated at each digestion phase with changes in the content of resistant starch. These results are expected to be used as fundamental data for obtaining bioavailability of nutrients.

Regulatory mechanism of Angelica Gigas extract powder on matrix metalloproteinases in vitro and in vivo model (참당귀 추출분말이 in vitro and in vivo model에서 MMPs 조절 기전)

  • Kwon, Jin-Hwan;Han, Min-Seok;Lee, Yong-Moon
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.361-369
    • /
    • 2015
  • The precise mechanism underlying the therapeutic efficacy of an extraction powder of Angelica gigas (AGE) for the treatment of degenerative osteoarthritis was investigated in primary cultured rabbit chondrocytes and in a monosodium-iodoacetate (MIA)-induced osteoarthritis rat model. The treatment with AGE (50 μg/mL) effectively inhibited NF-B activation. The anti-inflammatory mechanism was clarified by gelatin zymography and western blotting measurements of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) activities. The AGE (50 μg/mL) treatment significantly reduced MMP-9 activity. The constituents of AGE— decursinol, decursin, and decursinol angelate—were determined by LC-MS/MS after a 24 hr treatment of rabbit chondrocytes. The contents of the major products, decursin and decursinol angelate, were 3.62±0.47 and 2.14 ±0.36 μg/mg protein, respectively in AGE-treated (50 μg/mL) rabbit chondrocytes. An in vivo animal study on rats fed a diet containing 25, 50, and 100 mg/kg AGE for 3 weeks revealed a significant inhibition of the MMPs in the MIA-induced rat articular cartilage. The genetic expression of arthritic factors in the articular cartilage was examined by RT-PCR of collagen Type I, collagen Type II, aggrecan, and MMP (MMP3, MMP-9, MMP13). Specifically, AGE up-regulated the expression of collagen Type I, collagen Type II, and aggrecan and inhibited MMP levels at all tested concentrations. Collectively, AGE showed a strong specific site of action on MMP regulation and protected against the degeneration of articular cartilage via cellular regulation of MMP expression both in vitro and in vivo.

Mesenchymal Stem Cells Ameliorate Fibrosis by Enhancing Autophagy via Inhibiting Galectin-3/Akt/mTOR Pathway and by Alleviating the EMT via Inhibiting Galectin-3/Akt/GSK3β/Snail Pathway in NRK-52E Fibrosis

  • Yu Zhao;Chuan Guo;Lianlin Zeng;Jialing Li;Xia Liu;Yiwei Wang;Kun Zhao;Bo Chen
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.52-65
    • /
    • 2023
  • Background and Objectives: Epithelial-Mesenchymal transition (EMT) is one of the origins of myofibroblasts in renal interstitial fibrosis. Mesenchymal stem cells (MSCs) alleviating EMT has been proved, but the concrete mechanism is unclear. To explore the mechanism, serum-free MSCs conditioned medium (SF-MSCs-CM) was used to treat rat renal tubular epithelial cells (NRK-52E) fibrosis induced by transforming growth factor-β1 (TGF-β1) which ameliorated EMT. Methods and Results: Galectin-3 knockdown (Gal-3 KD) and overexpression (Gal-3 OE) lentiviral vectors were established and transfected into NRK-52E. NRK-52E fibrosis model was induced by TGF-β1 and treated with the SF-MSCs-CM for 24 h after modelling. Fibrosis and autophagy related indexes were detected by western blot and immunocytochemistry. In model group, the expressions of α-smooth muscle actin (α-SMA), fibronectin (FN), Galectin-3, Snail, Kim-1, and the ratios of P-Akt/Akt, P-GSK3β/GSK3β, P-PI3K/PI3K, P-mTOR/mTOR, TIMP1/MMP9, and LC3B-II/I were obviously increased, and E-Cadherin (E-cad) and P62 decreased significantly compared with control group. SF-MSCs-CM showed an opposite trend after treatment compared with model group. Whether in Gal-3 KD or Gal-3 OE NRK-52E cells, SF-MSCs-CM also showed similar trends. However, the effects of anti-fibrosis and enhanced autophagy in Gal-3 KD cells were more obvious than those in Gal-3 OE cells. Conclusions: SF-MSCs-CM probably alleviated the EMT via inhibiting Galectin-3/Akt/GSK3β/Snail pathway. Meanwhile, Gal-3 KD possibly enhanced autophagy via inhibiting Galectin-3/Akt/mTOR pathway, which synergistically ameliorated renal fibrosis. Targeting galectin-3 may be a potential target for the treatment of renal fibrosis.

Serum Talin-1 is a Potential Novel Biomarker for Diagnosis of Hepatocellular Carcinoma in Egyptian Patients

  • Youns, Mahmoud M.;Abdel Wahab, Abdel Hady A.;Hassan, Zeinab A.;Attia, Mohamed S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3819-3823
    • /
    • 2013
  • Background: Hepatocellular carcinoma (HCC) is a major cause of cancer mortality worldwide. The outcome of HCC depends mainly on its early diagnosis. To date, the performance of traditional biomarkers is unsatisfactory. Talins were firstly identified as cytoplasmic protein partners of integrins but Talin-1 appears to play a crucial role in cancer formation and progression. Our study was conducted to assess the diagnostic value of serum Talin-1 (TLN1) compared to the most feasible traditional biomarker alpha-fetoprotein (AFP) for the diagnosis of HCC. Methods: TLN1 was detected using enzyme linked immunosorbent assay (ELISA) in serum samples from 120 Egyptian subjects including 40 with HCC, 40 with liver cirrhosis (LC) and 40 healthy controls (HC). Results: ROC curve analysis was used to create a predictive model for TLN1 relative to AFP in HCC diagnosis. Serum levels of TLN1 in hepatocellular carcinoma patients were significantly higher compared to the other groups (p<0.0001). The diagnostic accuracy of TLN1 was higher than that of AFP regarding sensitivity, specificity, positive predictive value and negative predictive value in diagnosis of HCC. Conclusions: The present study showed for the first time that Talin-1 (TLN1) is a potential diagnostic marker for HCC, with a higher sensitivity and specificity compared to the traditional biomarker AFP.

Development of Implantable Blood Pressure Sensor Using Quartz Wafer Direct Bonding and Ultrafast Laser Cutting (Quatrz 웨이퍼의 직접접합과 극초단 레이저 가공을 이용한 체내 이식형 혈압센서 개발)

  • Kim, Sung-Il;Kim, Eung-Bo;So, Sang-kyun;Choi, Jiyeon;Joung, Yeun-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.168-177
    • /
    • 2016
  • In this paper we present an implantable pressure sensor to measure real-time blood pressure by monitoring mechanical movement of artery. Sensor is composed of inductors (L) and capacitors (C) which are formed by microfabrication and direct bonding on two biocompatible substrates (quartz). When electrical potential is applied to the sensor, the inductors and capacitors generates a LC resonance circuit and produce characteristic resonant frequencies. Real-time variation of the resonant frequency is monitored by an external measurement system using inductive coupling. Structural and electrical simulation was performed by Computer Aided Engineering (CAE) programs, ANSYS and HFSS, to optimize geometry of sensor. Ultrafast laser (femto-second) cutting and MEMS process were executed as sensor fabrication methods with consideration of brittleness of the substrate and small radial artery size. After whole fabrication processes, we got sensors of $3mm{\times}15mm{\times}0.5mm$. Resonant frequency of the sensor was around 90 MHz at atmosphere (760 mmHg), and the sensor has good linearity without any hysteresis. Longterm (5 years) stability of the sensor was verified by thermal acceleration testing with Arrhenius model. Moreover, in-vitro cytotoxicity test was done to show biocompatiblity of the sensor and validation of real-time blood pressure measurement was verified with animal test by implant of the sensor. By integration with development of external interrogation system, the proposed sensor system will be a promising method to measure real-time blood pressure.