• Title/Summary/Keyword: LC (Liquid Crystal) Alignment

Search Result 284, Processing Time 0.028 seconds

Liquid Crystal Aligning Capabilities Treated on Organic Overcoat Thin Films by Ion Beam Irradiation Method

  • Han, Jeong-Min;Kim, Byoung-Yong;Kim, Jong-Yeon;Kim, Young-Hwan;Han, Jin-Woo;Hwang, Jeoung-Yeon;Lee, Sang-Keuk;Kang, Dong-Hun;Ok, Chul-Ho;Seo, Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.245-249
    • /
    • 2007
  • The liquid crystal display (LCD) applications treated on the organic overcoat thin film surfaces by ion beam irradiation was successfully studied. The good LC aligning capabilities treated on the organic overcoat thin film surfaces with ion beam exposure of $60^{\circ}$ for 2 min above ion beam energy of 1200 eV can be achieved. But, the alignment of defect of NLC on the organic overcoat surface at low energy of 600 eV was measured. The pretilt angle of NLC on the organic overcoat thin film surface with ion beam exposure of $60^{\circ}$ for 2 min at energy of 1800 eV was measured about 1 degree. Finally, the good thermal stability of LC alignment on the organic overcoat thin film surface with ion beam exposure of $60^{\circ}$ for 2 min until annealing temperature of $200^{\circ}C$ can be measured.

Chemically modulated polystyrene surface using various ion beam exposure time for liquid crystal alignment of high brightness mobile display (고휘도 휴대용 디스플레이를 위한 액정소자의 폴리스타일렌 배향막에 관한 연구)

  • Cho, Myung-Hyun;Lee, Ho-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.22-26
    • /
    • 2014
  • This paper introduces homogeneous liquid crystal (LC) orientations on chemically modulated polystyrene (PS) surfaces using various ion beam (IB) exposure time. Transparent PS was replaced with conventional polyimde material. Especially, PS has higher transparent property than conventional polyimide thin film and it means PS is more suitable material for producing high brightness mobile LCD. As a non-contact process, IB bombardment process induced LC orientation in the direction parallel to the IB process. Through x-ray photoelectron spectroscopy, it was shown that the chemical compositional changes of the IB-irradiated PS surfaces were determined as a function of IB exposure time. Using this analysis, the optimal IB bombardment condition was determined at IB exposure time of up to 15 s. Moreover, thermal stability on IB-irradiated PS surfaces were carried out which showed that a relatively high IB exposure time induced a thermally stable LC alignment property. And it has a highly potential of mobile high transparent mobile LCD such as smart phone display and mobile information device.

Integrated Optical Wave Plates Fabricated by Incorporating Reactive Mesogen in Polymer Waveguide (반응성 메조겐을 이용한 폴리머 광도파로 편광 변환기)

  • Do, Hyun-Soo;Chu, Woo-Sung;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.5
    • /
    • pp.219-222
    • /
    • 2011
  • Integrated optical waveguide polarization converters are among the essential components for constructing various functional optical integrated circuits. The RM materials have been widely used in liquid crystal displays for fabricating waveplates. In this work, the polarization converters are fabricated by using a solution of Reactive Mesogen(RM) dissolved in liquid crystal(LC). In the middle of the polymer waveguide, a groove is defined by an oxygen plasma etching in a direction perpendicular to the optical waveguide. The solution of RM-LC is inserted to fill up the groove, and then liquid crystal is aligned in a certain direction by applying an electric field. After the alignment, RM materal is crosslinked by UV light so as to form a permanent waveplate. The phase retardation of the waveplate is determined by the width of the groove, and by the birefringence and the degree of alignment of the LC. Polarization conversion efficiency of 90% is obtained for the wavelength of 1550 nm.

Control of pretilt angles on $SiO_x$ Thin Film by Electron Beam Evaporation Method (전자빔 경사증착을 이용한 $SiO_x$ 박막의 프리틸트각 제어)

  • Kang, Hyung-Ku;Kim, Young-Hwan;Kim, Jong-Hwan;Han, Jin-Woo;Kang, Soo-Hee;Hwang, Jeoung-Yeon;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.311-312
    • /
    • 2005
  • By using 45$^{\circ}$ obliqued evaporation method with electron beam system, uniformly vertical liquid crystal (LC) alignment was achieved. And a high pretilt angles of about 2.5$^{\circ}$ were measured. Also, it was verified that there are no variations of pretilt angle as a function of $SiO_x$ thin film thickness 20nm and 50nm. A good LC alignment states were observed at annealing temperature of 250$^{\circ}C$. The high pretilt angle and the good thermal stability of LC alignment by 45$^{\circ}$ obliqued electron beam evaporation method on the $SiO_x$ thin film can be achieved.

  • PDF

Electro-Optical Characteristic for VA-LCD on the $SiO_x$ Thin Film Layer Oblique Deposited by Sputtering Method (스퍼터링으로 경사증착한 $SiO_x$ 박막을 이용한 VA-LCD의 전기광학특성)

  • Choi, Sung-Ho;Hwang, Jeoung-Yeon;Kim, Sung-Yeon;Oh, Byeong-Yun;Myoung, Jae-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.451-452
    • /
    • 2006
  • We studied the electro-optical characteristic of vertical alignment liquid crystal display(VA-LCD) on the $SiO_x$ thin film deposited $45^{\circ}$ oblique by rf magnetic sputtering system. LC alignment characteristic showed homeotropic alignment, and pretilt angle was about $90^{\circ}$. A uniform liquid crystal alignment effect on the $SiO_x$ thin film was achieved and the electro-optical characteristic of the $SiO_x$ thin film deposited $45^{\circ}$ oblique by rf magnetic sputtering system was excellent.

  • PDF

Ion beam irradiation for surface modification of alignment layers in liquid crystal displays (액정 디스플레이 배향막을 위한 이온빔 표면조사에 관한 연구)

  • Oh, Byeong-Yun;Kim, Byoung-Yong;Lee, Kang-Min;Kim, Young-Hwan;Han, Jeong-Min;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.41-41
    • /
    • 2008
  • In general, polyimides (PIs) are used in alignment layers in liquid crystal displays (LCDs). The rubbing alignment technique has been widely used to align the LC molecules on the PI layer. Although this method is suitable for mass production of LCDs because of its simple process and high productivity, it has certain limitations. A rubbed PI surface includes debris left by the cloth, and the generation of electrostatic charges during the rubbing induces local defects, streaks, and a grating-like wavy surface due to nonuniform microgrooves that degrade the display resolution of computer displays and digital television. Additional washing and drying to remove the debris, and overwriting for multi-domain formation to improve the electro-optical characteristics such as the wide viewing angle, reduce the cost-effectiveness of the process. Therefore, an alternative to non-rubbing techniques without changing the LC alignment layer (i.e, PI) is proposed. The surface of LC alignment layers as a function of the ion beam (IE) energy was modified. Various pretilt angles were created on the IB-irradiated PI surfaces. After IB irradiation, the Ar ions did not change the morphology of the PI surface, indicating that the pretilt angle was not due to microgrooves. To verify the compositional behavior for the LC alignment, the chemical bonding states of the ill-irradiated PI surfaces were analyzed in detail by XPS. The chemical structure analysis showed that ability of LCs to align was due to the preferential orientation of the carbon network, which was caused by the breaking of C=O double bonds in the imide ring, parallel to the incident 18 direction. The potential of non-rubbing technology for fabricating display devices was further conformed by achieving the superior electro-optical characteristics, compared to rubbed PI.

  • PDF

High Out-of-Plane Alignment of Liquid Crystalline Methacrylate Copolymer Bearing Photoreactive 4-Styrylpyridine Moiety

  • Kwak, Gi-Seop;Kong, Jong-Yun;Kim, Min-Woo;Hyun, Seok-Hee;Kim, Woo-Sik
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.271-275
    • /
    • 2009
  • This paper describes the out-of-plane order of a liquid crystalline(LC) methacrylate copolymer(3) comprised of a methacrylate(1) with a 4-styrylpyridine moiety as the photo-cyclodimerizable group and a benzoate moiety as the mesogenic group in the side chain, and another methacrylate(2) with a 4-(4-methoxyphenyl)benzoate moiety as the mesogenic group. The composition of 1 and 2 units in 3 was estimated to have a molar ratio of 54.2:45.8 by $^{1}H$ NMR spectroscopy. The X-ray diffraction study revealed that the copolymer forms a partial bilayer smectic structure. The copolymer gave rise to a high out-of-plane order parameter of about 0.74 in a wide LC temperature range of $110{\sim}160^{\circ}C$ after linearly polarized, UV light irradiation and subsequent annealing. Moreover, the external reflection IR analysis indicated that excess UV-light irradiation makes the out-of-plane LC structure of the copolymer appear in a higher and wider temperature range.

Annealing effect on LC alignment using the photo-depolymerization reaction (광분해 반응을 이용한 액정배향에서의 어닐링 효과)

  • Kim, Hyung-Kyu;Yu, Mun-Sang;Seo, Dae-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1762-1764
    • /
    • 1999
  • We investigated the annealing effect on generating pretilt angle and aligning liquid crystal (LC) using the photo-depolymerization reaction in this study. In case of rubbing polyimide (PI) surface with the side chain, pretilt angle tends to increase with increasing the annealing time. It is considered because the steric interaction is increased by annealing which cause the side chain to come back to original position. For obliquely irradiating ultraviolet (UV) light on PI surface, pretilt angle shows to $0^{\circ}$ and is increased by annealing. The pretilt angle in rubbed PI surface is much higher than in photo-aligned PI surface. It is attributed to the steric interaction and the number of LC molecular arrangement on azimuthal direction. In addition. in case of obliquely irradiating UV light on PI surface. it showed LC alignment to increase by annealing. It can be regarded due to the fact that the re-alignment of LC molecule is improved to residual polymer direction by annealing.

  • PDF

Control of Pretilt Angle Using a Photopolymer Based N-(phenyl)maleimide (N-(phenyl)maleimide 광폴리머 이용한 프리틸트각 제어)

  • Hwang, Jeoung-Yeon;Lee, Yun-Cun;Seo, Dae-Shik;Kim, Jun-Young;Lee, Jae-Ho;Kim, Tae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.182-185
    • /
    • 2001
  • A photoalignment material based N-(phenyl)maileimide were synthesized and the liquid crystal (LC) aligning capabilities on the photopolymer layer were studied. A goof LC alignment with UV exposure on the PM15CA(N-(phenyl)maileimide with 5-carbon chain cinnamoyl group) can be obtained However, the LC alignment defects were observed on the PM13CA (N-(phenyl)maileimide with 3-carbon cam cinnamoyl group) and PMIF (N-(Phenyl)maileimide including fluoro cinnamoyl group). Also, the good LC alignment with UV exposure on the PM15CA surface was observed at until $150^{\circ}C$ of annealing temperature. The LC aliging ability on the photopolymer layer based N-(phenyl)maleimide depends on the side chin length of photopolymer.

  • PDF

Liquid Crystal orientation on the NDLC Thin Film Deposited using physical deposition method (PVD방식을 이용한 NDLC 박막에서의 액정 배향 효과)

  • Lee, Won-Kyu;Oh, Byoung-Yun;Lim, Ji-Hun;Na, Hyun-Jae;Lee, Kang-Min;Park, Hong-Gyu;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.301-301
    • /
    • 2008
  • Ion beam (IB)-induced alignment of inorganic materials has been investigated intensively as it provides controllability in a nonstop process for producing high-resolution displays[1][2]. LC orientation via ion-beam (IB) irradiation on the nitrogen doped diamond like carbon (NDLC) thin film deposited by physical deposition method-sputtering was embodied. The NDLC thin film that was deposited by sputter showed uniform LC alignment at the 1200eV of the ion beam intensity. The pretilt angle of LC on NDLC thin films was measured with various IB exposure time and angle. The maximum pretilt angle were showed with IB irradiation angle of $45^{\circ}$ and exposure time of 62.5 sec, respectively. To show NDLC thin film stability in high temperature, thermal stability test was proceeded. The uppermost of the thermal stability of NDLC thin film was $200^{\circ}C$. In this investigation, the electro-optical (EO) characteristics of LC on NDLC thin film were measured.

  • PDF