• Title/Summary/Keyword: LC/MS analysis

Search Result 764, Processing Time 0.028 seconds

Effect of Jaeumkanghwatang (JEKHT), a Polyherbal Formula on the Pharmacokinetics Profiles of Tamoxifen in Male SD Rats (1) - Single Oral Combination Treatment of Tamoxifen 50 mg/kg with JEKHT 100 mg/kg within 5 min -

  • Kwak, Min A;Park, Soo Jin;Park, Sung Hwan;Lee, Young Joon;Ku, Sae Kwang
    • The Journal of Korean Medicine
    • /
    • v.37 no.2
    • /
    • pp.1-11
    • /
    • 2016
  • Objectives: The objective of this study was to elucidate the effect of Jaeumkanghwatang (JEKHT) on the plasma concentration and pharmacokinetics of tamoxifen in combination therapy as a process of the comprehensive and integrative medicine against breast cancer. Methods: After 50 mg/kg of tamoxifen treatment, JEKHT 100 mg/kg was orally administered within 5 min. The plasma were collected at 30 min before administration, 30min, 1, 2, 3, 4, 6, 8 and 24 hrs after end of JEKHT treatment, and plasma concentrations of tamoxifen were analyzed using LC-MS/MS methods. PK parameters of tamoxifen ($T_{max}$, $C_{max}$, AUC, $t_{1/2}$ and $MRT_{inf}$) were analysis as compared with tamoxifen single administered rats. Results: JEKHT did not influenced on the plasma concentrations and pharmacokinetics of tamoxifen after single oral co-administration, within 5min except for some negligible effects on plasma concentration. The $T_{max}$, $C_{max}$, AUC, $t_{1/2}$ and $MRT_{inf}$ of tamoxifen in co-administered rats were quite similar to those of tamoxifen single treated rats. Conclusions: Based on the results of the present study, JEKHT did not influenced on the oral bioavailability of tamoxifen, when they were single co-administered within 5min. However, more detail pharmacokinetic studies should be tested to conclude the possibilities that can be used as comprehensive and integrative therapy with JEKHT and tamoxifen for breast cancers, when they were co-administered, like the effects on the pretreatment of JEKHT and after repeat co-administrations.

Extracellular Proteome Profiling of Bacillus pumilus SCU11 Producing Alkaline Protease for Dehairing

  • Wang, Chao;Yu, Shiqiang;Song, Ting;He, Tingting;Shao, Huanhuan;Wang, Haiyan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1993-2005
    • /
    • 2016
  • Bacillus pumilus is one of the most characterized microorganisms that are used for high-level production of select industrial enzymes. A novel B. pumilus SCU11 strain possessing high alkaline protease activity was obtained in our previous work. The culture supernatant of this strain showed efficient dehairing capability with minimal collagen damage, indicating promising potential applications in the leather industry. In this study, the strain's extracellular proteome was identified by LC-MS/MS-based shotgun proteomic analysis, and their related secretory pathways were characterized by BLAST searches. A total of 513 proteins, including 100 actual secreted and 413 intracellular proteins, were detected in the extracellular proteome. The functions of these secreted proteins were elucidated and four complete secretory systems (Sec, Tat, Com, and ABC transporter) were proposed for B. pumilus. These data provide B. pumilus a comprehensive extracellular proteome profile, which is a valuable theoretical and applicative basis for future genetic modifications and development of industrial enzymes.

Impact of High-Level Expression of Heterologous Protein on Lactococcus lactis Host

  • Kim, Mina;Jin, Yerin;An, Hyun-Joo;Kim, Jaehan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1345-1358
    • /
    • 2017
  • The impact of overproduction of a heterologous protein on the metabolic system of host Lactococcus lactis was investigated. The protein expression profiles of L. lactis IL1403 containing two near-identical plasmids that expressed high- and low-level of the green fluorescent protein (GFP) were examined via shotgun proteomics. Analysis of the two strains via high-throughput LC-MS/MS proteomics identified the expression of 294 proteins. The relative amount of each protein in the proteome of both strains was determined by label-free quantification using the spectral counting method. Although expression level of most proteins were similar, several significant alterations in metabolic network were identified in the high GFP-producing strain. These changes include alterations in the pyruvate fermentation pathway, oxidative pentose phosphate pathway, and de novo synthesis pathway for pyrimidine RNA. Expression of enzymes for the synthesis of dTDP-rhamnose and N-acetylglucosamine from glucose was suppressed in the high GFP strain. In addition, enzymes involved in the amino acid synthesis or interconversion pathway were downregulated. The most noticeable changes in the high GFP-producing strain were a 3.4-fold increase in the expression of stress response and chaperone proteins and increase of caseinolytic peptidase family proteins. Characterization of these host expression changes witnessed during overexpression of GFP was might suggested the metabolic requirements and networks that may limit protein expression, and will aid in the future development of lactococcal hosts to produce more heterologous protein.

DC23, a Triazolothione Resorcinol Analogue, Is Extensively Metabolized to Glucuronide Conjugates in Human Liver Microsomes

  • Shon, Jong Cheol;Joo, Jeongmin;Lee, Taeho;Kim, Nam Doo;Liu, Kwang-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.9 no.1
    • /
    • pp.24-29
    • /
    • 2018
  • DC23, a triazolothione resorcinol analogue, is known to inhibit heat shock protein 90 and pyruvate dehydrogenase kinase which are up-regulated in cancer and diabetes, respectively. This study was performed to elucidate the metabolism of DC23 in human liver microsomes (HLMs). HLMs incubated with DC23 in the presence of uridine 5'-diphosphoglucuronic acid (UDPGA) and/or ${\beta}$-nicotinamide adenine dinucleotide phosphate (NADPH) resulted in the formation of four metabolites, M1-M4. M1 was identified as DC23-N-Oxide, on the basis of LC-MS/MS analysis. DC23 was further metabolized to its glucuronide conjugates (M2, M3, and M4). In vitro metabolic stability studies conducted with DC23 in HLMs revealed significant glucuronide conjugation with a $t_{1/2}$ value of 1.3 min. The inhibitory potency of DC23 on five human cytochrome P450s was also investigated in HLMs. In these experiments, DC23 inhibited CYP2C9-mediated tolbutamide hydroxylase activity with an $IC_{50}$ value of $8.7{\mu}M$, which could have implications for drug interactions.

Proteomics Comparison of Longissimus Muscle between Hanwoo and Holstein Cattle

  • Shim, Kwan-Seob;Park, Garng-Hee;Hwang, In-Ho;Yoon, Chang;Na, Chong-Sam;Jung, Hyun-Jung;Choe, Ho-Sung
    • Food Science of Animal Resources
    • /
    • v.30 no.3
    • /
    • pp.385-391
    • /
    • 2010
  • This study was conducted to compare proteins expressed in M. longissimus from Hanwoo and Holstein steers immediately after slaughter. Two-dimensional electrophoresis (2DE)/LC-MS/MS analysis revealed that the total number of detectable protein spots from longissimus muscle tissues was slightly higher in Hanwoo ($575{\pm}65$) than Holstein ($534{\pm}13$) steers, but that these numbers were not statistically significant due to large variation between replicates. A total of twelve protein spots did not match between sample groups, eight of which were expressed in the Hanwoo sample and four that were expressed in the Holstein sample. The protein spots detected in the Hanwoo sample included smooth muscle and non-muscle myosin alkali light chain 6B isomers, ${\alpha}B$ crystallin isomers, hemoglobin ${\beta}$-A chains, slow myosin heavy chains, and slow skeletal muscle troponin T chains. Collectively, these proteins are a class of slow-twitch muscle fiber and mirror that Hanwoo muscle tissue sampled for the current study contained more slow-twitch muscle fibers than Holstein one. Conversely, proteins detected from the Holstein sample included ankyrin repeat domain 2 and creatin kinase isomers. Given that creatin kinase isomers are related to the fast-twitch muscle, these results likely indicate that Holstein muscle tissue sampled for the current study contained more fast-twitch muscle fibers than Hanwoo beef.

Plant Back Interval of Fluopyram Based on Primary Crop-derived Soil and Bare Soil Residues for Rotational Cultivation of Radish (Fluopyram의 전작물 유래 및 나지조건 토양잔류성에 기초한 알타리무의 식물식재후방기간)

  • Kim, Young Eun;Yoon, Ji Hyun;Lim, Da Jung;Kim, Seon Wook;Cho, Hyunjeong;Shin, Byeung Gon;Kim, Hyo Young;Kim, In Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.2
    • /
    • pp.99-107
    • /
    • 2021
  • BACKGROUND: Pesticide uptake by a rotational crop after being used for the primary crop is a potential cause of violation against the pesticide law if the pesticide is not registered in the secondary crop. This study was conducted to investigate the plant back interval (PBI) of fluopyram for the rotational cultivation of radish. METHODS AND RESULTS: Two experimental approaches were performed the evaluation of residues in radish cultivated successively in soil 16 days after treated with fluopyram onto pepper plant (T1) and in radish cultivated in bare soil treated with fluopyram at PBI 30 and PBI 60 days (T2). A modified QuEChERS method coupled with LC/MS/MS analysis showed good linearity of matrix-matched standard calibration of fluopyram with the coefficient values of determination greater than 0.995. Recovery values at levels of 0.01, 0.05, 0.1 and 0.25 mg/kg ranged from average 84.9 to 117.6% with RSD less than 10%. Fluopyram residues in radish harvested from T1 and T2 were found as levels less than maximum residue limit. CONCLUSION: This study suggests 20~30 days as the PBI of fluopyram for the rotational cultivation of radish in the greenhouse soil treated with fluopyram used for pepper as the primary crop.

Effect of 2.5 hr-interval single oral combination treatment of Gamisoyo-san with Tamoxifen on the pharmacokinetics profiles of Tamoxifen in rats

  • Kim, Joo-Ik;Ku, Sae-Kwang;Lee, Young-Joon
    • The Journal of Korean Medicine
    • /
    • v.41 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • Objectives: Objectives: The object of this study was to elucidate the possible effects on the pharmacokinetics of tamoxifen after single oral co-administration of Gamisoyo-san (GMSYS) with 2.5 hr-intervals combination therapy of tamoxifen with GMSYS. Methods: After 2.5 hr of 50 mg/kg of tamoxifen treatment, GMSYS 100 mg/kg was administered. The plasma was collected at 30 min before administration, 30 min, 1, 2, 3, 4, 6, 8 and 24 hrs after end of GMSYS treatment, and plasma concentrations of tamoxifen were analyzed using LC-MS/MS methods. PK parameters of tamoxifen were analysis as compared with tamoxifen single administered rats. Results: Although single co-administration with GMSYS with 2.5 hr-interval induced increased trends of plasma tamoxifen concentrations, there are no significant changes on the plasma concentrations of tamoxifen were demonstrated in tamoxifen and GMSYS 100 mg/kg co-administrated rats with 2.5 hr-intervals as compared to those of tamoxifen single 50 mg/kg treated rats, and also GMSYS co-administrated rats did not showed any significant changes on the all pharmacokinetic parameters as compared to those of tamoxifen single formula treated rats. Conclusions: According to the this study, single co-administration of GMSYS with 2.5 hr-intervals did not critically influenced on the oral bioavailability of tamoxifen, suggesting GMSYS did not critically influenced on the absorption and excretion of tamoxifen, the oral bioavailability, when they were co-administered with 2.5 hr-intervals, at the dose levels of tamoxifen 50 mg/kg and GMSYS 100 mg/kg.

Effects of the mixed formulation of sorafenib and blue honeysuckle on the pharmacokinetics profiles of sorafenib

  • Kang, Hyun-Gu;Kang, Su-Jin;Ku, Sae-Kwang;Choi, Seong-Hun;Lee, Young-Joon
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.83-94
    • /
    • 2019
  • Objective : This study investigated the effects of concentrated and lyophilized blue honeysuckle powders (BH) on the pharmacokinetics (PK) of sorafenib were observed. Method : The blood was collected at 0.5 hr before single oral treatment of sorafenib (40 mg/kg) or sorafenib with BH (400, 200 and 100 mg/kg) mixed formulas administration, and 0.5, 1, 2, 3, 4, 6, 8 and 24 hrs after the end of single or mixed formula administration. Plasma concentrations of sorafenib were analyzed using LC-MS/MS methods. Tmax, Cmax, AUC, $t_{1/2}$ and $MRT_{inf}$ of sorafenib were analysis as compared with sorafenib single treatment. Results : Single oral administration of mixed formulas induced significant increases of plasma sorafenib concentrations from 0.5 hr after end of administration throughout all blood collected time points, as compared with sorafenib single formula treated rats, and significant decreases of sorafenib Tmax with increases of Cmax, $AUC_{0-t}$ and $AUC_{0-inf}$ were detected in sorafenib and BH 400 mg/kg mixed formulation treated rats as compared with sorafenib single formula treated rats, respectively. Inaddition, sorafenib and BH 200 or 100 mg/kg mixed formula treated rats also showed significant increases of sorafenib Cmax, $AUC_{0-t}$ and $AUC_{0-inf}$, respectively. Conclusions : According to these results, mixed formulation of BH with sorafenib increased the bioavailability of sorafenib through the increment of the absorptions.

Effect of the Single Oral Combination Treatment of Tamoxifen with Gamisoyo-san on the Pharmacokinetics Profiles of Tamoxifen

  • Kim, Joo-Ik;Ku, Sae-Kwang;Lee, Young-Joon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.201-208
    • /
    • 2020
  • The effects of Gamisoyo-san (GMSYS) co-administration within 5 min on the pharmacokinetics (PK) of tamoxifen were observed. After 50 mg/kg of tamoxifen oral treatment, GMSYS 100 mg/kg was orally administered within 5 min to 7-wk old male SPF.VAF Outbred Crl:CD [Sprague-Dawley (SD)] rats. The plasma were collected at 30 min before administration, 30 min, 1, 2, 3, 4, 6, 8 and 24 hrs after end of GMSYS treatment, and plasma concentrations of tamoxifen were analyzed using LC-MS/MS methods. Tmax, Cmax, AUC, t1/2 and MRTinf of tamoxifen were analysis as compared with tamoxifen single administered rats. Although co-administration with GMSYS did not critically influenced on the pharmacokinetic parameters of oral tamoxifen, they induced increased trends of plasma tamoxifen concentrations, especially significant (p<0.05) increases of plasma tamoxifen concentrations were demonstrated at 0.5 hr after end of co-administration with GMSYS as compared with tamoxifen single formula treated rats, at dosage levels of tamoxifen 10 mg/kg and GMSYS 100 mg/kg within 5 min. It is considered that pharmacokinetic studies should be tested like the effects of GMSYS on the pharmacokinetics of tamoxifen, when they were co-administered with prolonger intervals than Tmax of tamoxifen oral administration (about 2.5 hr-intervals), to achieve the optimal dosing regimen of GMSYS and tamoxifen co-administration.

Novel Antibacterial, Cytotoxic and Catalytic Activities of Silver Nanoparticles Synthesized from Acidophilic Actinobacterial SL19 with Evidence for Protein as Coating Biomolecule

  • Wypij, Magdalena;Ostrowski, Maciej;Piska, Kamil;Wojcik-Pszczola, Katarzyna;Pekala, Elzbieta;Rai, Mahendra;Golinska, Patrycja
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1195-1208
    • /
    • 2022
  • Silver nanoparticles (AgNPs) have potential applications in medicine, photocatalysis, agriculture, and cosmetic fields due to their unique physicochemical properties and strong antimicrobial activity. Here, AgNPs were synthesized using actinobacterial SL19 strain, isolated from acidic forest soil in Poland, and confirmed by UV-vis and FTIR spectroscopy, TEM, and zeta potential analysis. The AgNPs were polydispersed, stable, spherical, and small, with an average size of 23 nm. The FTIR study revealed the presence of bonds characteristic of proteins that cover nanoparticles. These proteins were then studied by using liquid chromatography with tandem mass spectrometry (LC-MS/MS) and identified with the highest similarity to hypothetical protein and porin with molecular masses equal to 41 and 38 kDa, respectively. Our AgNPs exhibited remarkable antibacterial activity against Escherichia coli and Pseudomonas aeruginosa. The combined, synergistic action of these synthesized AgNPs with commercial antibiotics (ampicillin, kanamycin, streptomycin, and tetracycline) enabled dose reductions in both components and increased their antimicrobial efficacy, especially in the case of streptomycin and tetracycline. Furthermore, the in vitro activity of the AgNPs on human cancer cell lines (MCF-7, A375, A549, and HepG2) showed cancer-specific sensitivity, while the genotoxic activity was evaluated by Ames assay, which revealed a lack of mutagenicity on the part of nanoparticles in Salmonella Typhimurium TA98 strain. We also studied the impact of the AgNPs on the catalytic and photocatalytic degradation of methyl orange (MO). The decomposition of MO was observed by a decrease in intensity of absorbance within time. The results of our study proved the easy, fast, and efficient synthesis of AgNPs using acidophilic actinomycete SL19 strain and demonstrated the remarkable potential of these AgNPs as anticancer and antibacterial agents. However, the properties and activity of such particles can vary by biosynthesized batch.