• 제목/요약/키워드: LASER BEAM WELDING

검색결과 249건 처리시간 0.023초

API강재의 파이버레이저 용접시 유기하는 플라즈마의 방사특성 (IV) - 키홀의 주기운동과 FFT분석의 상관성 - (Characteristics of Plasma Emission Signals in Fiber Laser Welding of API Steel (IV) - Correlation of Keyhole's Periodic Motion and FFT Analysis Results -)

  • 김종도;이창제;서정
    • Journal of Welding and Joining
    • /
    • 제31권4호
    • /
    • pp.28-33
    • /
    • 2013
  • The effects of laser welding beam quality is very large. However, not an analysing case was found for the difference on the plasma emission signal during laser welding according to the beam quality. Therefore, in this study, we compared and evaluated penetration and signal change according to the beam quality at the a similar wavelength band by using a fiber laser and Nd:YAG laser. In addition, we took high speed videography in order to make sure that FFT analysis reflects the actual motion period of keyhole and found the period of video analysis and FFT mostly matched. As a result, it is expected to secure higher reliability than evaluating signal intensity when appling FFT to monitoring.

박판의 $CO_2$레이저 빔 용접과 소재접합일체성형에 관한 연구- 동질 박판재간 - (A Study on the $CO_2$ Laser Beam Welding of Thin Steel Sheets and Tailored Blanks - Between Similar Thin Sheet Materials -)

  • 이희석;배동호
    • Journal of Welding and Joining
    • /
    • 제15권2호
    • /
    • pp.54-63
    • /
    • 1997
  • For the purpose of establishing laser welding condition (laser power, welding speed and beam focus) and of evaluating tailored blanks for two kinds of thin steel sheets SPCC and SK5M using in the thin plate structure such as automobile, train, and so on, investigated their $CO^2$ laser weldability under various initial welding conditions. SPCC thin sheet showed good weldability under some welding conditions. But, high carbon steel sheet SK5M needed heat treatment after welding to obtain ductility of the welded joint. And next, tailored blank was tested through deep drawing to evaluate reliability of their obtained laser welding conditions. The forming depths by tailored blank were SPCC+SPCC=22-25mm and SK5M+SK5M=13-25mm.

  • PDF

DEVELOPMENT OF COMBIND WELDING WITH AN ELECTRIC ARC AND LOW POWER CO LASER

  • Lee, Se-Hwan;Massood A. Rahimi;Charles E. Albright;Walter R. Lempert
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.176-180
    • /
    • 2002
  • During the last two decades the laser beam has progressed from a sophisticated laboratory apparatus to an adaptable and viable industrial tool. Especially, in its welding mode, the laser offers high travel speed, low distortion, and narrow fusion and heat-affected zones (HAZ). The principal obstacle to selection of a laser processing method in production is its relatively high equipment cost and the natural unwillingness of production supervision to try something new until it is thoroughly proven. The major objective of this work is focused on the combined features of gas tungsten arc and a low-power cold laser beam. Although high-power laser beams have been combined with the plasma from a gas tungsten arc (GTA) torch for use in welding as early as 1980, recent work at the Ohio State University has employed a low power laser beam to initiate, direct, and concentrate a gas tungsten arcs. In this work, the laser beam from a 7 watts carbon monoxide laser was combined with electrical discharges from a short-pulsed capacitive discharge GTA welding power supply. When the low power CO laser beam passes through a special composition shielding gas, the CO molecules in the gas absorbs the radiation, and ionizes through a process known as non-equilibrium, vibration-vibration pumping. The resulting laser-induced plasma (LIP) was positioned between various configurations of electrodes. The high-voltage impulse applied to the electrodes forced rapid electrical breakdown between the electrodes. Electrical discharges between tungsten electrodes and aluminum sheet specimens followed the ionized path provided by LIP. The result was well focused melted spots.

  • PDF

자동차용 무침입형 극저탄소강의 파이버 레이저 용접에 대한 연구 (A Study on the Fiber Laser welding of Ultra-Low Carbon Interstitial Free Steel for Automotive)

  • 오용석;신호준;양윤석;황찬연;유영태
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.342-349
    • /
    • 2011
  • The purpose of this paper is to describe experimental results about the butt welding and bead on plate welding of the high power Continuous Wave (CW) Fiber laser for Ultra-low carbon Interstitial Free(IF) steel plate for gear part of car. After being welded of the gear parts by the fiber laser and electron beam Microstructures of melting zone had been mixed acicular, granular bainitic, quasi-polygonal and widmanstatten ferrite because of a radical thermal diffusion after welding, difference of critical volume and grain size. As a result of experiment, when gear parts were welded by the fiber laser and electron beam, the fiber laser welding has been stable properties without internal defects more than the electron beam welding. Therefore it has the very advantages of welding high quality and productivity more than conventional melting method. The optimal welding processing parameters for gear parts were as follows : the laser power and welding speed were 3kWatt, 30mm/sec respectively. At this time heat input was $21.2{\times}10^3J/cm^2$.

자동차용 1500MPa급 초고강도강의 레이저 용접 특성에 관한 연구 (A Study on Laser Welding Characteristics of 1500MPa Grade Ultra High Strength Steel for Automotive Application)

  • 최진강;김종곤;신승민;김철희;이세헌
    • 한국레이저가공학회지
    • /
    • 제13권3호
    • /
    • pp.19-26
    • /
    • 2010
  • In this study, fundamental experiment was conducted with various strength of UHSS (Ultra High Strength Steel) by $CO_2$ laser. And then, butt and lap joint laser welding with boron alloyed steel and Al-Si coated boron alloy steel have been done by changing laser beam feature, existence of gap and existence of coating layer to know welding characteristics of those materials. As a result, in case of fundamental experiment with various strength steel, hardening was found in the weld metal of all tested materials and softening was found at the heat affected zone of SGAFC 1180. In case of laser butt welding of UHSS, mechanical properties was improved by using small laser beam diameter and Al-Si coating layer caused fracture of weld metal. In case of laser lap welding of UHSS, Al-Si coating layer resulted in formation of intermetallic compound at the fusion boundary where fracture occurred. Al-Si coating layer caused lowering mechanical properties of weld metal.

  • PDF

CONTROL OF LASER WELD KEYHOLE DYNAMICS BY POWER MODULATION

  • Cho, Min-Hyun;Dave Farson
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.600-605
    • /
    • 2002
  • The keyhole formed by high energy density laser-material interaction periodically collapses due to surface tension of the molten metal in partial penetration welds. The collapse sometimes traps a void at the bottom of the keyhole, and it remains as welding defects. This phenomenon is seen as one cause of the instability of the keyhole during laser beam welding. Thus, it seems likely that improving the stability of the keyhole can reduce voids and uniform the penetration depth. The goal of this work is to develop techniques for controlling laser weld keyhole dynamics to reduce weld defects such as voids and inconsistent penetration. Statistical analysis of the penetration depth signals in glycerin determined that keyhole dynamics are chaotic. The chaotic nature of keyhole fluctuations and the ability of laser power modulation to control them have been demonstrated by high-speed video images of laser welds in glycerin. Additionally, an incident leading beam angle is applied to enhance the stability of the keyhole. The quasi-sinusoidal laser beam power of 400Hz frequency and 15$^{\circ}$ incident leading beam angle were determined to be the optimum parameters for the reduction of voids. Finally, chaos analyses of uncontrolled signals and controlled signals were done to show the effectiveness of modulation on the keyhole dynamics. Three-dimensional phase plots for uncontrolled system and controlled system are produced to demonstrate that the chaotic keyhole dynamics is converted to regular periodic behavior by control methods: power modulation and incident leading beam angle.

  • PDF

조사연료봉 봉단마개의 레이저용접기술 (Technology of the End Cap Laser Welding for Irradiation Fuel Rods)

  • 김수성;이정원;고진현;이영호
    • Journal of Welding and Joining
    • /
    • 제21권6호
    • /
    • pp.20-25
    • /
    • 2003
  • Various welding methods such as Gas Tungsten Arc Welding(GTAW), magnetic force electrical resistance welding and Laser Beam Welding(LBW) are now available for end cap closure of nuclear fuel rods. Even though the resistance and GTA welding processes are widely used in manufacturing commercial fuel rods, they can not be recommended for the remote seal welding of fuel rods in the hot cell Facility due to the complexity of the electrode alignment, the difficulty in replacing parts in a remote manner and the large heat input for the thin sheath. Therefore, the Nd:YAG laser system using optical fiber transmission was selected for the end cap welding of irradiation fuel rods in the hot cell. The remote laser welding apparatus in the hot cell Facility was developed using a pulsed Nd:YAG laser of 500 watt average power with an optical fiber transmission. The weldment quality such as microstructure and mechanical strength was satisfactory. The optimum conditions of laser welding for encapsulating irradiation fuel rods in the hot cell were obtained.

강판의 레이저 용접시 공정변수의 영향에 관한 연구 (A study on the influence of process parameters during laser welding of sheet steels)

  • 박영수;이윤식;김형식;김찬
    • 한국레이저가공학회지
    • /
    • 제2권3호
    • /
    • pp.11-18
    • /
    • 1999
  • This paper describes the weldability of carbon steel and stainless steel using 5㎾ $CO_2$ laser system with nearly multi-mode beam and a parabolic focusing mirror. In the laser welding of steels, major welding parameters are focal point, travel speed, beam power, shield gas and gap tolerance, etc.. Two kinds of gases(Ar, He) were used as a assist gas and supplied through the external nozzle. It is very important for optimum condition to remove plasma plume which absorbs laser beam and to obtain deep penetration and sound weld bead. Bead-on-plate welding tests were carried out for the experiments. Penetration data were obtained with various welding parameters and the effects of welding parameters were discussed. Butt welding tests were performed with various conditions. Only the optimum laser parameters assured good weld quality As a result of this study, We achieve the fundamental weldabilities using a high power $CO_2$ laser for carbon steel and stainless steel.

  • PDF

질화처리된 저탄소강 레이저 용접부의 기공 감소 (Porosity Reduction in Laser Welding of Nitrided Carbon Steel)

  • 안영남;김철희;이원범;김정한
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.71-76
    • /
    • 2013
  • Gas nitriding is a surface hardening process where nitrogen is introduced into the surface of a ferrous alloy. During fusion welding of nitrided carbon steel, the nitride inside weld metal is dissolved and generates nitrogen gas, which causes porosities - blow holes and pits. In this study, several laser welding processes such as weaving welding, two-pass welding, dual beam welding and laser-arc hybrid welding were investigated to elongate the weld pool to enhance nitrogen gas evacuation. The surface pits were successfully eliminated with elongated weld pool. However blowholes inside the weld metal were effective reduced but not fully disappeared.

동축 파이프 이음부의 레이저용접 공정변수에 관한 연구 (Study on the Process Parameters for Laser Welding of Coaxial Circular Pipe Inner Flange)

  • 김용;박기영;이경돈
    • 한국레이저가공학회지
    • /
    • 제12권3호
    • /
    • pp.14-17
    • /
    • 2009
  • The laser welding was performed for the flange joint of two overlapped coaxial circular pipes which serve as the inlet and connector pipes of STS 316L. The laser welding test finally resulted in a good penetration depth of 1.8 to 2.0 mm. On the way to get the good welding quality, two important parameters were found to be optimized. One is the focal positioning which is the offset of the laser beam focus to the exact welding seam line, which is more critical in the inner flange laser welding. When the beam spot size was deviated more than $200\;{\mu}m$ from the seam line, welding of two pipes is failed. The other is a gap size since a certain amount of gap is inevitable due to fabrication tolerance, or artificial allowances for smooth insertion of a pipe. However, it is required to restrict the gap allowance within 0.2mm to avoid undesirable undercut on a welding bead.

  • PDF