• Title/Summary/Keyword: LAND COVER

Search Result 1,416, Processing Time 0.03 seconds

Outlook Analysis of Future Discharge According to Land Cover Change Using CA-Markov Technique Based on GIS (GIS 기반 CA-Markov 기법을 이용한 토지피복 변화에 따른 미래 유출량 전망 분석)

  • Park, Jin-Hyeog;No, Sun-Hee;Lee, Geun-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.25-39
    • /
    • 2013
  • In this study, the change of the discharge according to the land cover change which acts as one of dominant factors for the outlook of future discharge was analyzed using SWAT(Soil and Water Assessment Tool) model for Yongdam and Daecheong Dam Watershed in the Geum River Basin. The land cover maps generated by Landsat TM satellite images in the past 1990 and 1995 were used as observed data to simulate the land cover in 2000 by CA-Markov serial technique and after they were compared and verified, the changes of land cover in 2050 and 2100 in the future were simulated. The discharge before and after the change of land cover by using input data of SWAT model was compared and analyzed under the A1B scenario. As a result of analyzing the trend in the elapses of year on the land cover in the Geum River Basin, the forest and rice paddy class area steadily decreased while the urban, bare ground and grassland classes increased. As a result of analyzing the change of discharge considering the future change of the land cover, it appeared that the discharge considering the change of land cover increases by 1.83~2.87% on the whole compared to the discharge not considering the change of land cover.

Improvement of MODIS land cover classification over the Asia-Oceania region (아시아-오세아니아 지역의 MODIS 지면피복분류 개선)

  • Park, Ji-Yeol;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.51-64
    • /
    • 2015
  • We improved the MODerate resolution Imaging Spectroradiometer (MODIS) land cover map over the Asia-Oceania region through the reclassification of the misclassified pixels. The misclassified pixels are defined where the number of land cover types are greater than 3 from the 12 years of MODIS land cover map. The ratio of misclassified pixels in this region amounts to 17.53%. The MODIS Normalized Difference Vegetation Index (NDVI) time series over the correctly classified pixels showed that continuous variation with time without noises. However, there are so many unreasonable fluctuations in the NDVI time series for the misclassified pixels. To improve the quality of input data for the reclassification, we corrected the MODIS NDVI using Correction based on Spatial and Temporal Continuity (CSaTC) developed by Cho and Suh (2013). Iterative Self-Organizing Data Analysis (ISODATA) was used for the clustering of NDVI data over the misclassified pixels and land cover types was determined based on the seasonal variation pattern of NDVI. The final land cover map was generated through the merging of correctly classified MODIS land cover map and reclassified land cover map. The validation results using the 138 ground truth data showed that the overall accuracy of classification is improved from 68% of original MODIS land cover map to 74% of reclassified land cover map.

A Study of Establishment and application Algorithm of Artificial Intelligence Training Data on Land use/cover Using Aerial Photograph and Satellite Images (항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터 구축 및 알고리즘 적용 연구)

  • Lee, Seong-hyeok;Lee, Moung-jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.871-884
    • /
    • 2021
  • The purpose of this study was to determine ways to increase efficiency in constructing and verifying artificial intelligence learning data on land cover using aerial and satellite images, and in applying the data to AI learning algorithms. To this end, multi-resolution datasets of 0.51 m and 10 m each for 8 categories of land cover were constructed using high-resolution aerial images and satellite images obtained from Sentinel-2 satellites. Furthermore, fine data (a total of 17,000 pieces) and coarse data (a total of 33,000 pieces) were simultaneously constructed to achieve the following two goals: precise detection of land cover changes and the establishment of large-scale learning datasets. To secure the accuracy of the learning data, the verification was performed in three steps, which included data refining, annotation, and sampling. The learning data that wasfinally verified was applied to the semantic segmentation algorithms U-Net and DeeplabV3+, and the results were analyzed. Based on the analysis, the average accuracy for land cover based on aerial imagery was 77.8% for U-Net and 76.3% for Deeplab V3+, while for land cover based on satellite imagery it was 91.4% for U-Net and 85.8% for Deeplab V3+. The artificial intelligence learning datasets on land cover constructed using high-resolution aerial and satellite images in this study can be used as reference data to help classify land cover and identify relevant changes. Therefore, it is expected that this study's findings can be used in the future in various fields of artificial intelligence studying land cover in constructing an artificial intelligence learning dataset on land cover of the whole of Korea.

WRF Sensitivity Experiments on the Choice of Land Cover Data for an Event of Sea Breeze Over the Yeongdong Region (영동 지역 해풍 사례를 대상으로 수행한 지면 피복 자료에 따른 WRF 모델의 민감도 분석)

  • Ha, Won-Sil;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.373-389
    • /
    • 2011
  • This research focuses on the sensitivity of the WRF(Weather Research and Forecasting) Model according to three different land cover data(USGS(United States Geological Survey), MODIS(Moderate Resolution Imaging Spectroradiometer)30s+USGS, and KLC (Korea Land Cover)) for an event of sea breeze, occurred over the Gangwon Yeongdong region on 13 May 2009. Based on the observation, the easterly into Gangneung, due to the sea-breeze circulation, was identified between 1000 LST and 1640 LST. It did not reach beyond the Taebaek Mountain Range and thus the easterly was not observed near Daegwallyeong. On the other hand, the numerical simulations utilizing land cover data of USGS, MODIS30s+USGS, and KLC showed easterlies beyond the Taebaek Mountain Range up to Daegwallyeong. In addition, rather different penetration distances of each easterly, and different timings of beginning and ending of sea breeze were identified among the simulations. The Bias, MAE(Mean Absolute Error) and RMSE(Root Mean Square Error) of the wind from WRF simulation using MODIS30s+USGS land cover data were the least among the simulations particularly over Gangwon Yeongdong coastal area(Sokcho, Gangneung and Donghae), while those of the wind over the Gangwon Mountain area(Daegwallyeong and Jinbu) from the simulation using KLC land cover data were the least among them. The wind field over Gangwon Yeongdong coastal area from the simulation using USGS land cover data was rather poor among them.

Landsat TM Based Land-cover Analysis of Cholwon (South Korea) and Wonsan (North Korea)

  • Song, Moo-Young;Park, Jong-Oh;Shin, Kwang-Soo;Yu, Young-Chul
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2002
  • The land-cover of two regions of South and North Korea included in one Landsat TM scene was investigated by comparing different seasons and different band data over the multiple land-cover types. The relationships between the intensities of two bands in the 2-D plot are mainly linear in band2 versus band1 and band3 versus band1, polygonal sporadic in band5 versus band1 and band7 versus band1, and almost tri-polarized in band4 versus band3. The 2-D plot of band4/band3 shows the best capability to discriminate different main land-cover such as water, vegetation and dry soil. Some discriminations are not clear between city and dry field, or mountain and plain field in the scene of September. The digital number data of band4 from vegetated zones show stronger reflectance in September rather than April, while other band values tend to be lager in April than in September over each land-cover. NDVI presents high value in both regions in September. However the image of Wonsan area in April suggests weak vigor of vegetation in comparison with Cholwon area. Band ratios are very effective in eliminating the influence of the complex topography. The proper pairing of the band ratio improved the discrimination capability of the land-cover; band5/band2 for dry soil, band4/band3 for vegetation and band1/band7 for the water. The RGB combination of the three band ratio pairs showed the best results in the discrimination of the land-cover of Wonsan, Cholwon and even the Demilitarized Zone.

A Study of Runoff Curve Number Estimation Using Land Cover Classified by Artificial Neural Networks (신경망기법으로 분류한 토지피복도의 CN값 산정 적용성 검토)

  • Kim, Hong-Tae;Shin, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.633-645
    • /
    • 2003
  • The techniques of GIS and remote sensing are being applied to hydrology, geomorphology and various field of studies are performed by many researcher, related those techniques. In this paper, curve number change detection is tested according to soil map and land cover in mountain area. Neural networks method is applied for land cover classification and GIS for curve number calculation. The first, sample area are selected and tested land cover classification, NN(84.1%) is superior to MLC(80.9%). So we selected NN with land cover classifier. The second, curve number from the land cover by neural network classifier(57) is compared with that(curve number) from the land cover by manual work(55). Two values are so similar. The third, curve number classified by NN in sample area was applied and tested to whole study area. As results of this study, it is shown that curve number is more exact and efficient by using NN and GIS technique than by (using) manual work.

Performance Evaluation of Machine Learning Algorithms for Cloud Removal of Optical Imagery: A Case Study in Cropland (광학 영상의 구름 제거를 위한 기계학습 알고리즘의 예측 성능 평가: 농경지 사례 연구)

  • Soyeon Park;Geun-Ho Kwak;Ho-Yong Ahn;No-Wook Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.507-519
    • /
    • 2023
  • Multi-temporal optical images have been utilized for time-series monitoring of croplands. However, the presence of clouds imposes limitations on image availability, often requiring a cloud removal procedure. This study assesses the applicability of various machine learning algorithms for effective cloud removal in optical imagery. We conducted comparative experiments by focusing on two key variables that significantly influence the predictive performance of machine learning algorithms: (1) land-cover types of training data and (2) temporal variability of land-cover types. Three machine learning algorithms, including Gaussian process regression (GPR), support vector machine (SVM), and random forest (RF), were employed for the experiments using simulated cloudy images in paddy fields of Gunsan. GPR and SVM exhibited superior prediction accuracy when the training data had the same land-cover types as the cloud region, and GPR showed the best stability with respect to sampling fluctuations. In addition, RF was the least affected by the land-cover types and temporal variations of training data. These results indicate that GPR is recommended when the land-cover type and spectral characteristics of the training data are the same as those of the cloud region. On the other hand, RF should be applied when it is difficult to obtain training data with the same land-cover types as the cloud region. Therefore, the land-cover types in cloud areas should be taken into account for extracting informative training data along with selecting the optimal machine learning algorithm.

The Expectation of the Land Use and Land Cover Using CLUE-S Model and Landsat Images (CLUE-S 모델과 시계열 Landsat 자료를 이용한 토지피복 변화 예측)

  • Kim, Woo-Sun;Yun, Kong-Hyun;Heo, Joon;Jayakumar, S.
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • Land use/land cover is very important to understand the change in the land cover between specific periods. But as there are number of factors which are responsible for the change in the land cover, it is very difficult to identify the specific factors. Therefore in the study we made an attempt to use the land use strategies quantitatively and conducted simulation study. The input data using the CLUE-S model are the satellite data of 1987 and 2001 from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) and we conducted simulations for 23 years from 1987 to 2010. As a result, the accuracy between the land use map derived from original satellite data and simulation for 2001 was 93.69% and in this reason we could expect land use and land cover in the future.

  • PDF

A Prediction of the Land-cover Change Using Multi-temporal Satellite Imagery and Land Statistical Data: Case Study for Cheonan City and Asan City, Korea (다중시기 위성영상과 토지 통계자료를 이용한 토지피복 변화 예측: 천안시·아산시를 사례로)

  • KIM, Chansoo;PARK, Ji-Hoon;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.1
    • /
    • pp.41-56
    • /
    • 2011
  • This study analyzes the change in land-cover based on satellite imagery to draw up land-cover map in the future, and estimates the change in land category using statistical data of the land category. To estimate land category, this study applied the double exponentially smoothing method. The result of the land cover classification according to year using satellite imagery showed that the type with the largest increase in area of land cover change in the cities of Cheonan and Asan was artificial structure, followed by water, grass field and bare land. However forest, paddy, marsh and dry field were reduced. Further, the result of the time-series analysis of the land category was found to be similar to the result of the land cover classification using satellite imagery. Especially, the result of the estimation of the land category change using the double exponentially smoothing method showed that paddy, dry field, forest and marsh are anticipated to consistently decrease in area from 2010 to 2100, whereas artificial structure, water, bare land and grass field are anticipated to consistently increase. Such results can be utilized as basic data to estimate the change in land cover according to climate change in order to prepare climate change response strategies.

Land cover classification based on the phonology of Korea using NOAA-AVHRR

  • Kim, Won-Joo;Nam, Ki-Deock;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.439-442
    • /
    • 1999
  • It is important to analyze the seasonal change profiles of land cover type in large scale for establishing preservation strategy and environmental monitoring. Because the NOAA-AVHRR data sets provide global data with high temporal resolution, it is suitable for the land cover classification of the large area. The objectives of this study were to classify land cover of Korea, to investigate the phenological profiles of land cover. The NOAA-AVHRR data from Jan. 1998 to Dec. 1998 were received by Korea Ocean Research & Development Institute(KORDI) and were used for this study. The NDVI data were produced from this data. And monthly maximum value composite data were made for reducing cloud effect and temporal classification. And the data were classified using the method of supervised classification. To label the land cover classes, they were classified again using generalized vegetation map and Landsat-TM classified image. And the profiles of each class was analyzed according to each month. Results of this study can be summarized as follows. First, it was verified that the use of vegetation map and TM classified map was available to obtain the temporal class labeling with NOAA-AVHRR. Second, phenological characteristics of plant communities of Korea using NOAA-AVHRR was identified. Third, NDVI of North Korea is lower on Summer than that of South Korea. And finally, Forest cover is higher than another cover types. Broadleaf forest is highest on may. Outline of covertype profiles was investigated.

  • PDF