• Title/Summary/Keyword: LAN 위상

Search Result 36, Processing Time 0.021 seconds

A Research on Performance Improvement of Wireless LAN System (무선 LAN 시스템 성능개선에 관한 연구)

  • Cho, Juphil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1028-1033
    • /
    • 2014
  • We investigate the OFDM-based wireless LAN systems operating in the 60 GHz frequency band as part of the fourth-generation (4G) systems. The 60 GHz band is of much interest since this is the band in which a massive amount of spectral space has been allocated worldwide for dense wireless local communications. This paper gives an overview of 60 GHz band channel characteristics and an effect on phase noise. The performance of OFDM system is severely degraded by the local oscillator phase noise, which causes both common phase error and inter-carrier interference. In this paper, we apply phase noise suppression (PNS) algorithm that is easy for implementation to OFDM based 60 GHz wireless LAN system and analyze the SER performance. In case of using the PNS algorithm, SER performance is improved about 6 dB, 7.5 dB, respectively in 16, 64-QAM.

Design of Ku-Band Phase Locked Harmonic Oscillator (Ku-Band용 위상 고정 고조파 발진기 설계)

  • Lee Kun-Joon;Kim Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.49-55
    • /
    • 2005
  • In this paper, the phase locked harmonic oscillator(PLHO) using the analog PLL(Phase Locked Loop) is designed and implemented for a wireless LAN system. The harmonic oscillator is consisted of a ring resonator, a varactor diode and a PLL circuit. Because the fundamental fiequency of 8.5 GHz is used as the feedback signal for the PLL and the 2nd harmonic of 17.0 GHz is used as the output, a analog frequency divider for the phase comparison in the PLL system can be omitted. For the simple PLL circuit, the SPD(Sampling Phase Detector) as a phase comparator is used. The output power of the phase locked harmonic oscillator is 2.23 dBm at 17 GHz. The fundamental and 3rd harmonic suppressions are -31.5 dBc and -29.0 dBc, respectively. The measured phase noise characteristics are -87.6 dBc/Hz and -95.4 dBc/Hz at the of offset frequency of 1 kHz and 10 kHz from the carrier, respectively.

Ethernet Topology Transformation and Throughput Analysis (이더넷 위상 변환과 성능 분석)

  • 권정국;백의현;이동길;이상호
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.1
    • /
    • pp.77-85
    • /
    • 2003
  • The conversion into a new Local Area Network (LAN) environment without clear analysis of the problems with the conventional LAN environment nay bring about some improvement of performance, but in general, the result would not be as good as expected. Besides, in case new traffic or application programs are added In the near future, traffic overload similar to the past may incur. Therefore, the conversion into a new LAN environment should not only relieve the problems with the conventional environment but also be able to cope with future expansion of the network flexibly. In the present paper, in view of the above, the problems with protocols and traffic that may occur in the Bus-structured 10/100 Mbps shared Ethernet that has been widely used by many institutions are reviewed, and as a case study whether such conversion into a new LAN environment in order to increase the efficiency in the operation, management, and utilization of the network would be proper for the actual operational environment is implemented, and the results are analyzed.

Phase Noise Analysis and Suppression Algorithm for OFDM-Based 60GHz WLANs (OFDM 기반의 60GHz WLAN을 위한 위상잡음 해석과 위상잡음 억제 알고리즘)

  • Kim Han-Kyong;Ahn Kyung-Seung;Baik Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1248-1255
    • /
    • 2005
  • We investigate the OFDM-based wireless LAN systems operating in the 60 GHz frequency band as part of the fourth-generation (4G) systems. The 60 GHz band is of much interest since this is the band in which a massive amount of spectral space has been allocated worldwide for dense wireless local communications. This paper gives an overview of 60 GHz bandchannel characteristics and an effect on phase noise. The performance of OFDM system is severely degraded by the local oscillator phase noise, which causes both common phase error and inter-carrier interference. In this paper, we apply phase noise suppression (PNS) algorithm that is easy for implementation to OFDM based 60 GHz wireless LAM system and analyze the SER performance. In case of using the PNS algorithm, SER performance is improved about 6dB, 7.5dB, respectively in 16, 64-QAM.

Characteristics of Smart Skin for Wireless LAN system under Buckling Load (무선 랜 시스템용 스마트 스킨의 좌굴 특성 연구)

  • 전지훈;유치상;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.42-45
    • /
    • 2001
  • The characteristics of smart skin for wireless LAN system under compression load are investigated. The smart skin structure is composed of 3 layers of face material and 2 layers of core material. Theoretical formula for determining buckling load is derived by Rayleigh-Ritz method and compared with experimental result. The maximum length of specimen that buckling does not occur is determined by only face material. In the experiment, if load supporting capability and the antenna property such as radiation pattern and reflection coefficient were examined.

  • PDF

Analysis of Power Amplifier Phase Distortion Characteristics for IEEE 802.11a OFDM Wireless LAM Using Phase Predistortion (사전위상 왜곡을 이용한 IEEE 802.11a OFDM 무선랜 전력증폭기 위상왜곡 특성분석)

  • Oh Chung Gyun;Choi Jae Hong;Koo Kyung Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, 2-stage power amplifier has been designed for 5.8GHz wireless LAN application. The power amplifier PldB output power has 21.6dBm at 5.8GHz frequency. Also the power amplifier shows 17.6dB gain and -17.8dB input return loss at 5.725GHz to 5.825GHz. The OFDM modulation and transmission block have been modeled in order to analyse the relationship between the power amplifier distortion and output ACPR for the IEEE 802.11a wireless LAN. The nonlinear characteristic of the power amplifier has been modeled as AM-to-AM and AM-to-PM using the behavioral model, and the output spectrum is analysed with the phase distortion variation. Also, amplifier back-off value from PldB to satisfy the required IEEE 802.11a standard spectrum mask has been simulated with phase distortion, and the simulation data have been compared to the measurement result collected by using the pre-distortion technique.

Optimal LAN Design Using a Pareto Stratum-Niche Cubicle Genetic Algorithm (PS-NC GA를 이용한 최적 LAN 설계)

  • Choi, Kang-Hee;Jung, Kyoung-Hee
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.3
    • /
    • pp.539-550
    • /
    • 2005
  • The spanning tree, which is being used the most widely in indoor wiring network, is chosen for the network topology of the optimal LAN design. To apply a spanning tree to GA, the concept of $Pr\ddot{u}fer$ numbers is used. $Pr\ddot{u}fer$ numbers can express he spanning tree in an efficient and brief way, and also can properly represent the characteristics of spanning trees. This paper uses Pareto Stratum-Niche Cubicle(PS-NC) GA by complementing the defect of the same priority allowance in non-dominated solutions of pareto genetic algorithm(PGA). By applying the PS-NC GA to the LAN design areas, the optimal LAN topology design in terms of minimizing both message delay time and connection-cost could be accomplished in a relatively short time. Numerical analysis has been done for a hypothetical data set. The results show that the proposed algorithm could provide better or good solutions for the multi-objective LAN design problem in a fairly short time.

  • PDF

Design of Phase Shift Lines in Linear Power Amplifier Using Shifted Photonic Bandgap (가변 PBG 천이격자를 이용한 선형증폭기 위상제어 선로 설계)

  • 윤진호;서철헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.496-499
    • /
    • 2002
  • In this paper, a phase shifter with shifting photonic bandgap(PBG) cell in linear feedforward amplifier is designed and fabricated in 5GHz wireless LAN band. Now a day, the phase shifter has been fabricated with hybrid type. In this paper, a portion of PBG cell is shifted for the tuning phase. The phase shift was achieved maximum 80o in our PBG structure. Shifting PBG cell has been applied in feedforward main loop to cancel the main two tone signal.

Nonlinear Distortion Analysis of 2.4GHz Power Amplifier for IEEE 802.11g OFDM Wireless LAN (IEEE 802.11g OFDM 무선랜용 2.4GHz 전력증폭기의 비선형 왜곡분석)

  • Oh Chung Gyun;Choi Jae Hong;Koo Kyung Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.39-44
    • /
    • 2005
  • The OFDM modulation and transmission block have been modeled in order to analyse the relationship between the 2.4GHz power amplifier distortion and output ACPR for the IEEE 802.11g wireless LAN. The nonlinear characteristic of the power amplifier has been modeled as AM-to-AM and AM-to-PM using the behavioral model, and the output spectrum is analysed with the phase distortion variation. Also, amplifier back-off value from P1dB to satisfy the required IEEE 802.11g standard spectrum mask s been simulated with modeled phase distortion, and the simulation data have been compared to the measured result by using the pre-distortion technique.

Design of a Frequency Offset Corrector and Analysis of Noises due to Quantization Angle in OFDM LAN Systems (OFDM 시스템에서 주파수편차 교정기의 설계와 각도 양자화에 의한 잡음의 분석)

  • 황진권
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.794-806
    • /
    • 2004
  • This paper deals with correction of frequency offset and analysis of quantization angle noise in the IEEE 802.1la OFDM system. The rotation phase per symbol due to the carrier frequency offset is estimated from auto-correlation of the short Preambles, which are over-sampled for the reduction of noise in OFDM signals. The pilot signals are introduced to estimate the rotation phase per OFDM symbol due to estimation error of the carrier frequency offset and the sampling frequency onset. During the estimation and correction of the frequency onsets, a CORDIC processor and a look-up table are used for the conversion between a rotation phase and its complex number. Being calculated by a limited number of bits in the CORDIC processor and the look-up table, the rotation phase and its complex number have quantization angle errors. The quantization errors are analyzed as SNR (signal to noise ratio) due to the quantization bit numbers. The minimum bit number is suggested to meet the specification of IEEE 802.1la properly. Finally, the quantization errors are evaluated through simulations on number of quantization bits and SNR of received signals.