• 제목/요약/키워드: LAMS

검색결과 12건 처리시간 0.016초

Crystallization and X-ray crystallographic analysis of the PH-like domain of lipid transfer protein anchored at membrane contact sites from Saccharomyces cerevisiae

  • Tong, Junsen;Im, Young Jun
    • Biodesign
    • /
    • 제5권4호
    • /
    • pp.136-140
    • /
    • 2017
  • Lam6 is a member of sterol-specific ${\underline{l}ipid$ transfer proteins ${\underline{a}}nchored$ at ${\underline{m}ebrane$ contact sites (LAMs). Lam6 localizes to the ER-mitochondria contact sites by its PH-like domain and the C-terminal transmembrane helix. Here, we purified and crystallized the Lam6 PH-like domain from Saccharomyces cerevisiae. To aid crystallization of the Lam6 PH-like domain, T4 lysozyme was fused to the N-terminus of the Lam6 PH-like domain with a short dipeptide linker, GlySer. The fusion protein was crystallized under the condition of 0.1 M HEPES-HCl pH 7.0, 10% (w/v) PEG 8000, and 0.1 M $Na_3$ Citrate at 293K. X-ray diffraction data of the crystals were collected to $2.4{\AA}$ resolution using synchrotron radiation. The crystals belong to the orthorhombic space group $P2_12_12_1$ with unit cell parameters $a=59.5{\AA}$, $b=60.1{\AA}$, and $c=105.6{\AA}$. The asymmetric unit contains one T4L-Lam6 molecule with a solvent content of 58.7%. The initial attempt to solve the structure by molecular replacement using the T4 lysozyme structure was successful.

Collaboration Scripts for Argumentation Based on Activity Theory

  • KIM, Hyosook;KWON, Sungho;KIM, Dongsik
    • Educational Technology International
    • /
    • 제13권1호
    • /
    • pp.145-173
    • /
    • 2012
  • The purpose of this study is to develop collaboration scripts as an instructional means to facilitate argumentation in computer-supported collaborative learning, and to analyze their effects. To develop collaboration scripts for argumentation, researchers used activity theory as a conceptual framework and refined the design principles by design-based research. Using LAMS, collaboration scripts for argumentation were developed based on the ArgueGraph. To examine their effects, 72 participants were divided into two groups by internal scripts and randomly allocated to one of three external scripts. Applying mixed methods, researchers analyzed argumentation competence related to the cognitive aspect, examined self-efficacy related to the motivational aspect, and identified the factors influencing collaborative learning processes and outcomes. Researchers found that the internal script is a critical factor to determine the dimensions, degrees, and duration of improvement in argumentation competence. That is, learners with higher internal scripts improved highly in the quality of single arguments, while learners with lower internal scripts improved continuously in the quality of argumentation sequences. The effects of the external scripts varied with the internal script levels and supporting periods. Besides, collaboration scripts for argumentation had positive effects on learners' self-efficacy, and learners with higher internal scripts had better self-efficacy. The factors influencing collaborative learning processes and outcomes showed different results depending on the learning context. Therefore, when scripting learner's interaction in CSCL, researchers should design the scripts adaptable to a natural context of activities.