• Title/Summary/Keyword: LAM(Laser Assist Maching

Search Result 2, Processing Time 0.019 seconds

A Study on the Analysis of Optimal Working Condition for Constant Temperature Laser MCT(LAM) Combined Machining (항온 Laser MCT(LAM) 복합 가공의 최적 가공 조건 해석)

  • Jeong-Ho Park;Gwi-Nam Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1197-1204
    • /
    • 2023
  • Ti-alloy, a high-strength alloy material among the materials used in aircraft that are trending toward lighter weight, is classified as a difficult-to-cut material that requires a lot of energy for cutting. Cutting in a high-temperature environment is considered one means of making this possible, and various studies have been conducted on it. In particular, research on LAM (Laser Assisted Machining (LAM)), which utilizes laser heating of the cutting area, is being actively conducted. Before processing of the milling cutter begins, the temperature is raised locally by the laser irradiated through the laser head carrier, and the resistance during milling is reduced. Therefore, in this paper, in order to derive such conditions, we performed heat transfer analysis according to transfer conditions and compared it with actually applied test data to use it to establish appropriate processing conditions.

A Study on the Thermo-Mechanical Coupling Analysis to Working Condition of LAM (LAM 가공조건에 따른 열-구조 연성해석)

  • Park, Jeong-Ho;Park, Sung-Ho;Kim, Gwi-Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1127-1133
    • /
    • 2022
  • Recently, the use of aircraft structures using Ti alloy (Ti-6Al-4V), a lightweight high-strength alloy material, is rapidly increasing due to the weight reduction of aircraft. However, high-strength materials such as Ti alloys require high energy for cutting and are classified as difficult-to-cut materials. Also, research on Laser Assisted Machining (hereinafter referred to as LAM), a cutting processing technology that utilizes improved machinability, is being actively researched. Therefore, in this paper, in order to confirm the proper temperature distribution using a laser, the finite element method is used to determine the temperature distribution according to the calorific value condition to derive the appropriate condition, and the thermal load generated at this time is used as a structural analysis. It is intended to be used as basic data for LAM processing conditions by measuring the amount of residual stress and thermal deformation caused by heat.