• Title/Summary/Keyword: LAI

Search Result 852, Processing Time 0.033 seconds

VALIDITY OF NDVI-BASED BIOPHYSICAL PARAMETERS FOR ECOSYSTEM MODELS

  • Lee, Kyu-Sung;Jang, Ki-Chang;Kim, Tae-Geun;Lee, Seung-Ho;Cho, Hyun-Guk
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.543-546
    • /
    • 2006
  • NDVI has been very frequently used to estimate several biophysical parameters that are required for ecosystem models. Leaf area index (LAI), canopy closure, and biomass are among those biophysical parameters that are estimated by empirical relationship with NDVI. However, the type of remote sensing signals (raw DN value, at-sensor radiance, atmospherically corrected reflectance) used can vary the calculation of NDVI. In this study, we tried to attempt to compare the influence of NDVI linked with forest LAI for the watershed-scale ecosystem models to estimate evapotranspiration. Landsat ETM+ data were used to obtain various NDVI values over the study area in central Korea. The NDVI-based LAI and the resultant evapotranspiration estimation were greatly varied by the remote sensing signal applied.

  • PDF

Characteristics of 10-day composite NDVI and LAI in Korea Peninsula Using NOAA AVHRR Data (NOAA AVHRR데이터를 이용한 한반도의 순별 NDVI와 LAI 특성)

  • Park, Jong-Hwa;Jun, Taek-Ki;Na, Sang-Il;Park, Min-Seo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.649-654
    • /
    • 2005
  • This study proposes a particular approach to assess information about NDVI(Normalized Difference Vegetation Index) and LAI(Leaf Area Index) from the spectroradiometer and NOAA/AVHRR satellite data. AVHRR data were collected in twelves months over a one year period in 2004. We calculated 10-day composite NDVI using daily composite AVHRR surface reflectance products(1km spatial resolution). The 10-day composite NDVI have a great effect on the plant growth conditions. Considerably, NDVI was increased by developing muscle fiber tissue from April to May. Then the NDVI increased until the August and then decreased until February. The highest month was at August and the lower month was at December. The difference NDVI analysis using December and another months data was conducted, the results were provided information on the variation of vegetation coverage. The result suggest that a relationship established between the LAI and NDVI in 2004.

  • PDF

Determining Canopy Growth Conditions of Paddy Rice via Ground-based Remote Sensing

  • Jo, Seunghyun;Yeom, Jongmin;Ko, Jonghan
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.1
    • /
    • pp.11-20
    • /
    • 2015
  • This study aimed to investigate the canopy growth conditions and the accuracy of phenological stages of paddy rice using ground-based remote sensing data. Plant growth variables including Leaf Area Index (LAI) and canopy reflectance of paddy rice were measured at the experimental fields of Chonnam National University, Gwangju, Republic of Korea during the crop seasons of 2011, 2012, and 2013. LAI values were also determined based on correlations with Vegetation Indices (VIs) obtained from the canopy reflectance. Three phenological stages (tillering, booting, and grain filling) of paddy rice could be identified using VIs and a spatial index (NIR versus red). We found that exponential relationships could be applied between LAI and the VIs of interest. This information, as well as the relationships between LAI and VIs obtained in the present study, could be used to estimate and monitor the relative growth and development of rice canopies during the growing season.

The Effect of Urban Shade Trees on the WBGT(Wet Bulb Globe Thermometer Index) (도심 녹음수의 체감온도지수(WBGT) 조절효과)

  • 주민진;이춘석;류남형
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.51-59
    • /
    • 2004
  • Focusing on WBGT(Wet Bulb Globe Thermometer Index) according to the LAI(Leaf Area Index) variation of trees, this study verifies the effects of urban shade trees on the outdoor thermal environment. As for methodology, air$.$globe temperature, air humidity and WBGT were measured under three shade trees whose LAIs were 2.1, 4.0 and 8.2 respectively at midday(12:00-13:00) of 14 sunny days from the 4th through the 29th day of September 2003. Those factors were also measured at the unshaded areas and compared with the values of shaded areas. The measured site was paved with interlocking concrete bricks. The measurements were analyzed through the ANCOV A(Analysis of Covariance) and the regression routines of SPSS11 for windows (SPSS Inc., 2001). The major findings were as follows. 1. The direct correlation between WBGT and LAI was very low. On the contrary, the WBGT showed close correlation with air$.$globe temperature and air humidity, and the LAI also showed very close correlation with globe temperature. These results tell that dominant shading effect by the tree is on the screening of direct solar radiation which lower the globe temperature and WBGT consequently. 2. While the average globe temperatures and WBGT at unshadowed area were 40.4$^{\circ}C$ and 26.2$^{\circ}C$ respectively, the former under the shade tree with LAI 2.1, 4.0 and 8.2 were 34.5$^{\circ}C$, 32.6$^{\circ}C$ and 30.2$^{\circ}C$, and the latter were 24.6$^{\circ}C$, 24$^{\circ}C$ and 23.4$^{\circ}C$ respectively. 3. The relationship between LAI(x) and WBGT(y) can be presented with the following equation: y = 24.23+1.53 $e^{-x}$+0.36x $e^{-x}$+0.46 $x^2$ $e^{-x}$ ($R^2$ =.98) =.98)

Evaluation of the Applicability of Rice Growth Monitoring on Seosan and Pyongyang Region using RADARSAT-2 SAR -By Comparing RapidEye- (RADARSAT-2 SAR를 이용한 서산 및 평양 지역의 벼 생육 모니터링 적용성 평가 -RapidEye와의 비교를 통해-)

  • Na, Sang Il;Hong, Suk Young;Kim, Yi Hyun;Lee, Kyoung Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.55-65
    • /
    • 2014
  • Radar remote sensing is appropriate for rice monitoring because the areas where this crop is cultivated are often cloudy and rainy. Especially, Synthetic Aperture Radar (SAR) can acquire remote sensing information with a high temporal resolution in tropical and subtropical regions due to its all-weather capability. This paper analyzes the relationships between backscattering coefficients of rice measured by RADARSAT-2 SAR and growth parameters during a rice growth period. And we applied the relationships to crop monitoring of paddy rice in North Korea. As a result, plant height and Leaf Area Index (LAI) increased until Day Of Year (DOY) 234 and then decreased, while fresh weight and dry weight increased until DOY 253. Correlation coefficients revealed that Horizontal transmit and Horizontal receive polarization (HH)-polarization backscattering coefficients were correlated highly with plant height (r=0.95), fresh weight (r=0.92), vegetation water content (r=0.91), LAI (r=0.90), and dry weight (r=0.89). Based on the observed relationships between backscattering coefficients and variables of cultivation, prediction equations were developed using the HH-polarization backscattering coefficients. Concerning the evaluation for the applicability of the LAI distribution from RADARSAT-2, the LAI statistic was evaluated in comparison with LAI distribution from RapidEye image. And LAI distributions in Pyongyang were presented to show spatial variability for unaccessible areas.

Effect of Spacing Density and Nitrogen level on Yield and Properties of Aromatic Tobacco leaves (향끽미종 담배의 재식밀도 및 질소시비량이 잎담배 생육 및 특성에 미치는 경향)

  • 류명현;김용옥;손현주;조재성
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.2
    • /
    • pp.231-237
    • /
    • 1986
  • Under the different conditions of planting density and nitrogen level with aromatic tobacco, some agronomic characters of tobacco like plant height, leaf size, LAI, yield and price were investigated in view of aroma volatile acid contents, the main compounds contributing to the aroma of oriental leaf tobacco. The closer a spacing interval became, the smaller the growth of plant and the leaf size with increment of yields, until about 22,000 plants per 10 are. But the leaf size became smaller without increment of yield when the planting density became more than 22,000 plants per 10 are. There were definite trends toward increase in leaf size, LAI and yield with increase in nitrogen rate. Correlation coefficient between aroma volatile and plant height, largest leaf length, one leaf area was -0.49, -0.49 and -0.47, respectively, showing significance at 1 % level. But LAI (r=-0.14) and dry weight of unit leaf area(r=0.25) was not observed to be significantly associated with aroma volatile, respectively. The results suggest that closer spacing is desirable for smaller leaves, higher contents of aroma volatile and for increased yield.

  • PDF

Lightweight AES-based Whitebox Cryptography for Secure Internet of Things (안전한 사물인터넷을 위한 AES 기반 경량 화이트박스 암호 기법)

  • Lee, Jin-Min;Kim, So-Yeon;Lee, Il-Gu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1382-1391
    • /
    • 2022
  • White-box cryptography can respond to white-box attacks that can access and modify memory by safely hiding keys in the lookup table. However, because the size of lookup tables is large and the speed of encryption is slow, it is difficult to apply them to devices that require real-time while having limited resources, such as IoT(Internet of Things) devices. In this work, we propose a scheme for collecting short-length plaintexts and processing them at once, utilizing the characteristics that white-box ciphers process encryption on a lookup table size basis. As a result of comparing the proposed method, assuming that the table sizes of the Chow and XiaoLai schemes were 720KB(Kilobytes) and 18,000KB, respectively, memory usage reduced by about 29.9% and 1.24% on average in the Chow and XiaoLai schemes. The latency was decreased by about 3.36% and about 2.6% on average in the Chow and XiaoLai schemes, respectively, at a Traffic Load Rate of 15 Mbps(Mega bit per second) or higher.

Plant Architecture and Flag Leaf Morphology of Rice Crops Exposed to Experimental Warming with Elevated CO2

  • Vu, Thang;Kim, Han-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.3
    • /
    • pp.255-263
    • /
    • 2011
  • Projected increases in atmospheric $CO_2$ concentration ([$CO_2$]) and temperature ($T_a$) have the potential to alter in rice growth and yield. However, little is known about whether $T_a$ warming with elevated [$CO_2$] modify plant architecture. To better understand the vertical profiles of leaf area index (LAI) and the flag leaf morphology of rice grown under elevated $T_a$ and [$CO_2$], we conducted a temperature gradient field chamber (TGC) experiment at Gwangju, Korea. Rice (Oryza sativa L. cv. Dongjin1ho) was grown at two [$CO_2$] [386 (ambient) vs 592 ppmV (elevated)] and three $T_a$ regimes [26.8 ($\approx$ambient), 28.1 and $29.8^{\circ}C$] in six independent field TGCs. While elevated $T_a$ did not alter total LAI, elevated [$CO_2$] tended to reduce (c. 6.6%) the LAI. At a given canopy layer, the LAI was affected neither by elevated [$CO_2$] nor by elevated $T_a$, allocating the largest LAI in the middle part of the canopy. However, the fraction of LAI distributed in a higher and in a lower layer was strongly affected by elevated $T_a$; on average, the LAI distributed in the 75-90 cm (and 45-60 cm) layer of total LAI was 9.4% (and 35.0%), 18.8% (25.9%) and 18.6% (29.2%) in ambient $T_a$, $1.3^{\circ}C$ and $3.0^{\circ}C$ above ambient $T_a$, respectively. Most of the parameters related to flag leaf morphology was negated with elevated [$CO_2$]; there were about 12%, 5%, 7.5%, 15% and 21% decreases in length (L), width (W), L:W ratio, area and mass of the flag leaf, respectively, at elevated [$CO_2$]. However, the negative effect of elevated [$CO_2$] was offset to some extent by $T_a$ warming. All modifications observed were directly or indirectly associated with either stimulated leaf expansion or crop phenology under $T_a$ warming with elevated [$CO_2$]. We conclude that plant architecture and flag leaf morphology of rice can be modified both by $T_a$ warming and elevated [$CO_2$] via altering crop phenology and the extent of leaf expansion.