• Title/Summary/Keyword: L. casei

Search Result 268, Processing Time 0.024 seconds

Effects of Lactobacillus casei and Aggregatibactor actinomycetemcomitans against Streptococcus mutans according to the Concentration of Sucrose

  • Soon-Jeong Jeong
    • Journal of dental hygiene science
    • /
    • v.23 no.2
    • /
    • pp.103-111
    • /
    • 2023
  • Background: Some studies confirm the reduction of the number of Streptococcus mutans in saliva and dental plaque by Lactobacillus, however, these effects are not always confirmed in in vitro and clinical studies, and only the risk of dental caries has been reported. Our in vitro study aimed to reveal microbial and biochemical changes in the single cultures of S. mutans, Lactobacillus casei and Aggregatibactor actinomycetemcomitans and co-cultures of S. mutans and L. casei or A. actinomycetemcomitans according to sucrose concentration. We also aimed to confirm the anti-oral bacterial and anti-biofilm activities of L. casei and A. actinomycetemcomitans against S. mutans according to sucrose concentration. Methods: S. mutans (KCCM 40105), L. casei (KCCM 12452), and A. actinomycetemcomitans (KCTC 2581) diluted to 5×106 CFU/ml were single cultured, and L. casei or A. actinomycetemcomitans applied at concentrations of 10%, 20%, 30% and 40% to S. mutans were co-cultured with selective medium containing 0%, 1% and 5% sucrose at 36.5℃ for 24 hours. Measurements of bacterial growth value and acid production, disk diffusion and biofilm formation assays were performed. Results: In the medium containing sucrose, the bacterial growth and biofilm formation by S. mutans, L. casei, and A. actinomycetemcomitans were increased. In contrast, 30% and 40% of L. casei in the medium containing 0% sucrose showed both anti-oral bacterial and anti-biofilm activities. This implies that L. casei can be used as probiotic therapy to reduce S. mutans in a 0% sucrose environment. Conclusion: The concentration of sucrose in the oral environment is important for the control of pathogenic bacteria that cause dental caries and periodontitis. To apply probiotic therapy using L. casei for S. mutans reduction, the concentration of sucrose must be considered.

Lactobacillus casei Secreting ${\alpha}$-MSH Induces the Therapeutic Effect on DSS-Induced Acute Colitis in Balb/c Mice

  • Yoon, Sun-Woo;Lee, Chul-Ho;Kim, Jeong-Yoon;Kim, Jie-Youn;Sung, Moon-Hee;Poo, Har-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1975-1983
    • /
    • 2008
  • The neuropeptide ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH) has anti-inflammatory property by down regulating the expressions of proinflammatory cytokines. Because ${\alpha}$-MSH elicits the anti-inflammatory effect in various inflammatory disease models, we examined the therapeutic effect of oral administration of recombinant Lactobacillus casei, which secretes ${\alpha}$-MSH (L. casei-${\alpha}$-MSH), on dextran sulfate sodium (DSS)-induced colitis in Balb/c mice. Thus, we constructed the ${\alpha}$-MSH-secreting Lactobacillus casei by the basic plasmid, pLUAT-ss, which was composed of a PldhUTLS promoter and ${\alpha}$-amylase signal sequence from Streptococcus bovis strain. Acute colitis was induced by oral administration of 5% DSS in drinking water for 7 days. To investigate the effect of L. casei-${\alpha}$-MSH on the colitis, L. casei or L. casei-${\alpha}$-MSH was orally administered for 7 days and their effects on body weight, mortality rate, cytokine production, and tissue myeloperoxidase (MPO) activity were observed. Administration of L. casei-${\alpha}$-MSH reduced the symptom of acute colitis as assessed by body weight loss (DSS alone: $14.45{\pm}0.2\;g$; L. casei-${\alpha}$-MSH: $18.2{\pm}0.12\;g$), colitis score (DSS alone: $3.6{\pm}0.4$; L. casei-${\alpha}$-MSH: $1.4{\pm}0.6$), MPO activity (DSS alone: $42.7{\pm}4.5\;U/g$; L. casei-${\alpha}$-MSH: $10.25{\pm}0.5\;U/g$), survival rate, and histological damage compared with the DSS alone mice. L. casei-${\alpha}$-MSH-administered entire colon showed reduced in vitro production of proinflammatory cytokines and $NF-{\kappa}B$ activation. The ${\alpha}$-MSH-secreting recombinant L. casei showed significant anti-inflammatory effects in the murine model of acute colitis and suggests a potential therapeutic role for this agent in clinical inflammatory bowel diseases.

Studies on the Protoplast Fusion between Lactobacillus casei and Lactobacillus delbrueckii (Lactobacillus casei와 Lactobacillus delbrueckii간의 Protoplast 융합에 관한 연구)

  • 전홍기;김미경;백형석
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.6-13
    • /
    • 1992
  • - Protoplast fusion between lincomycin resistant Lactobacillus casei KCTC 1121 and rifarnpicin resistant Lactobacillus delbrueckii JK-414 was attempted to obtain the improved strains. Protoplasts of L. casei and L. delbrueckii were produced by mutanolysin digestion at $42^{\circ}C$ for 15 min. L. casei cells were converted to protoplasts by treating with 5 $\mu g$ / m l of mutanolysin in 20 mM HEPES buffer (pH 7.0) containing 0.75 M sucrose at the middle logarithmic growth phase. In case of L. delbrueckii 1.0 M sucrose was used osmotic stabilizer. Regeneration of protoplast in both strains was efficiently accomplished on the regeneration medium containing 10% sucrose, 6 mM $MgC1_2, 6 mM CaC1_2$, and 2.5% gelatin. Protoplast fusion between L. casei and L. delbrueckii was carried out in the presence of 40% of PEG 4,000. The frequency of protoplast fusion was found to be about $3.2\times 10^4$. Acid production of L. casei was better than that of L. delbrueckii. Among fusants, F23 and F35 exhibited excellent lactic acid production. F23 and F24 exhibited the improved proteolysis compared to that of the parent strains and they had twice as much as DNA content of the parents.

  • PDF

Regulation of Metabolic Flux in Lactobacillus casei for Lactic Acid Production by Overexpressed ldhL Gene with Two-Stage Oxygen Supply Strategy

  • Ge, Xiang-Yang;Xu, Yan;Chen, Xiang;Zhang, Long-Yun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.81-88
    • /
    • 2015
  • This study describes a novel strategy to regulate the metabolic flux for lactic acid production in Lactobacillus casei. The ldhL gene encoding L-lactate dehydrogenase (L-LDH) was overexpressed in L. casei, and a two-stage oxygen supply strategy (TOS) that maintained a medium oxygen supply level during the early fermentation phase, and a low oxygen supply level in the later phase was carried out. As a consequence, a maximum L-LDH activity of 95.6 U/ml was obtained in the recombinant strain, which was over 4-fold higher than that of the initial strain. Under the TOS for L. casei (pMG-ldhL), the maximum lactic acid concentration of 159.6 g/l was obtained in 36 h, corresponding to a 62.8% increase. The results presented here provide a novel way to regulate the metabolic flux of L. casei for lactic acid production in different fermentation stages, which is available to enhance organic acid production in other strains.

Characteristics of the antibacterial substances produced by Lactobacillus casei subsp. and Streptococcus faecium (Lactobacillus casei subsp. 및 Streptococcus faecium이 생산한 항균성물질의 성상)

  • Kang, Kyoung-koo;Mah, Jum-sool
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.3
    • /
    • pp.393-406
    • /
    • 1993
  • Antibacterial substances produced by Lactobacillus casei subsp. and Streptococcus faecium were examined for its antibacterial effects against some pathogenic bacteria. They were partially purified with ammonium sulfate precipitation, methanol-acetone extraction, G-50 gel filtration and examined its characteristics. When L casei subsp. and Str faecium were cultivated in MRS broth, stationary phase of L casei is until 24 hours and Str faecium is 20 hours. pH change of the cultured medium was both decreased after 12 hours and then constant at pH 4.5~4.6 after 28 hours. MRS broth culture fluids of L casei subsp. and Str faecium appeared the antibacterial effects by the spot-on-the-lawn method against ETEC, Sal pullorum and Sta aureus. Culture filtrates of L casei subsp. and Str faecium also appeared the antibacterial effects by the disc diffusion method. Culture filtrates of L casei sub. rhamnosus 7469 produced 0.032M of lactic acid and 0.01M of acetic acid. Str faecium 27273 also produced 0.027M of lactic acid and 0.01M of acetic acid. Protein concentrations of culture filtrates produced by L casei sub rhamnosus 7469 and Str faecium 27273 was $495{\mu}g/m{\ell}$ and $594{\mu}g/m{\ell}$, respectively. Antibacterial substances which are partially purified by ammonum sulfate precipitation, methanol-acetone extraction and G-50 gel filtration inhibit the growth of ETEC, Sal pullorum and Sta aureus. Characteristics of purified antibacterial substances was examined. Its molecular weight was about 31Kd, stabilized at $100^{\circ}C/20min.$ and some of proteolytic enzyme treatment.

  • PDF

Beneficial Effects of Lactobacillus casei ATCC 334 on Halitosis Induced by Periodontopathogens

  • Lee, Ki-Ho;Baek, Dong-Heon
    • International Journal of Oral Biology
    • /
    • v.39 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • Halitosis is caused by consumption of certain foods or drinks and production of volatile sulfur compounds (VSCs) by periodontopathogens. VSCs-related halitosis is not easily removed using mechanical or chemical therapies such as dental floss, plaque control and mouth rinse. Lactobacillus are known to be probiotics and stimulate immune systems of human. Furthermore, L. casei ATCC 334 and L. rhamnosus GG have an effect on protection of dental caries in vitro studies. The aim of this study was to investigate effect of Lactobacillus on halitosis by Fusobacterium nucleatum- and Porphyromonas gingivalis-producing VSCs and to analyze inhibitory mechanism. The periodontopathogens were cultivated in the presence or the absence Lactobacillus, and the level of VSCs was measured by gas chromatograph. For analysis of inhibitory mechanisms, the susceptibility assay of the spent culture medium of Lactobacillus against F. nucleatum and P. gingivalis was investigated. Also, the spent culture medium of Lactobacillus and periodontopathogens were mixed, and the emission of VSCs from the spent culture medium was measured by gas chromatograph. L. casei and L. rhamnosus significantly reduced production of VSCs. L. casei and L. rhamnosus exhibited strong antibacterial activity against F. nucleatum and P. gingivalis. The spent culture medium of L. casei inhibited to emit gaseous hydrogen sulfide, methyl mercaptan and dimethyl sulfide from the spent culture medium of periodontopathogens. However, the spent medium of L. rhamnosus repressed only dimethyl sulfide. L. casei ATCC 334 may improve halitosis by growth inhibition of periodontopathogens and reduction of VSCs emission.

Evaluation of the role of Lactobacillus casei on alcohol metabolism and liver functions of rats

  • Kim, Ji-Hyun;Kim, Hyun-Jin;Kim, Sung-Koo
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.214-218
    • /
    • 2003
  • Alcohol consumption causes numerous consequences on the health of the human body. Heavy drinking on a daily base has caused liver diseases. Furthermore, some products such as acetaldehyde produced from alcohol metabolism are more toxic than alcohol itself. This study was carried out to evaluate the role of Lactobacillus casei on alcohol metabolism, especially, the removal of the toxic effect of alcohol. The maximum alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities from L. casei were observed at 4 hr of culture. L. casei was confirmed to produce the ADH and ALDH by the SDS-PAGE. From in vivo test using SD rats with 22% alcoholic drink, blood alcohol concentration (BAC), glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) of the rats feeding the medium containing L. casei were lower than those of the rats feeding the medium containing an alcoholic drink only This demonstrates that the ADH and ALDH produced by L. casei have virtual functions to detoxicate the alcohol in vivo and the fermentation broth of L. casei can be used as an alcohol detoxification drink.

  • PDF

Screening and Characterization of Lactobacillus casei MCL Strain Exhibiting Immunomodulation Activity

  • Choi, Jae-Kyoung;Lim, Yea-Seul;Kim, Hee-Jin;Hong, Yeong-Ho;Ryu, Buom-Yong;Kim, Geun-Bae
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.635-643
    • /
    • 2012
  • As an appraisal for the application of a new starter culture, more than 200 lactic acid bacteria strains were isolated from raw milk and healthy human feces. The strains showing excellent growth and acid production ability in 10% skim milk media were selected and identified as Lactobacillus casei based on the results of their API carbohydrate fermentation patterns, as well as 16S rDNA sequence analysis. To assess the effect of L. casei strains on irritable bowel disease (IBD), the inhibitory effect of the selected strains against the nitric oxide (NO) production of lipopolysaccharide (LPS)-stimulated RAW 264.7 cells was measured. Among the tested L. casei strains, L. casei MCL was observed to have the greatest NO inhibitory activity. Additionally, L. casei MCL was found to inhibit mRNA expression of pro-inflammatory cytokines (interleukin-$1{\beta}$, IL-6, TNF-${\alpha}$), as well as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) involved in pathophysiologic processes such as inflammation. The mRNA expression of anti-inflammatory cytokines, including IL-10 and transforming growth factor-$1{\beta}$ (TGF-${\beta}$) of L. casei MCL, was confirmed using quantitative real-time PCR. In conclusion, L. casei MCL showed decreases in the expression of pro-inflammatory cytokines and up-regulated expression of the anti-inflammatory cytokine.

Lactobacillus casei Zhang Prevents Jejunal Epithelial Damage to Early-Weaned Piglets Induced by Escherichia coli K88 via Regulation of Intestinal Mucosal Integrity, Tight Junction Proteins and Immune Factor Expression

  • Wang, Yuying;Yan, Xue;Zhang, Weiwei;Liu, Yuanyuan;Han, Deping;Teng, Kedao;Ma, Yunfei
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.863-876
    • /
    • 2019
  • Farm animals such as piglets are often affected by environmental stress, which can disturb the gut ecosystem. Antibiotics were commonly used to prevent diarrhea in weaned piglets, but this was banned by the European Union due to the development of antibiotic resistance. However, the use of probiotics instead of antibiotics may reduce the risk posed by pathogenic microorganisms and reduce the incidence of gastrointestinal diseases. Therefore, this study was conducted to investigate the effects of Lactobacillus casei Zhang on the mechanical barrier and immune function of early-weaned piglets infected using Escherichia coli K88 based on histomorphology and immunology. Fourteen-day-old weaned piglets were divided into a control group and experimental groups that were fed L. casei Zhang and infected with E. coli K88 with or without prefeeding and/or postfeeding of L. casei Zhang. The L. casei Zhang dose used was $10^7CFU/g$ diet. Jejunum segments were obtained before histological, immunohistochemical, and western blot analyses were performed. In addition, the relative mRNA expression of toll receptors and cytokines was measured. Piglets fed L. casei Zhang showed significantly increased jejunum villus height, villus height-crypt depth ratio, muscle thickness, and expression of proliferating cell nuclear antigen and tight junction proteins ZO-1 and occludin. The use of L. casei Zhang effectively reduced intestinal inflammation after infection. We found that L. casei Zhang feeding prevented the jejunum damage induced by E. coli K88, suggesting that it may be a potential alternative to antibiotics for preventing diarrhea in early-weaned piglets.

Oral Administration of Poly-Gamma-Glutamic Acid Significantly Enhances the Antitumor Effect of HPV16 E7-Expressing Lactobacillus casei in a TC-1 Mouse Model

  • Kim, Eunjin;Yang, Jihyun;Sung, Moon-Hee;Poo, Haryoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1444-1452
    • /
    • 2019
  • The conventional prophylactic vaccines for human papillomavirus (HPV) efficiently prevent infection with high-risk HPV types, but they do not promote therapeutic effects against cervical cancer. Previously, we developed HPV16 E7-expressing Lactobacillus casei (L. casei-E7) as a therapeutic vaccine candidate for cervical cancer, which induces antitumor therapeutic effects in a TC-1 murine cancer model. To improve the therapeutic effect of L. casei-E7, we performed co-treatment with poly-gamma-glutamic acid (${\gamma}-PGA$), a safe and edible biomaterial naturally secreted by Bacillus subtilis. We investigated their synergistic effect to improve antitumor efficacy in a murine cancer model. The treatment with ${\gamma}-PGA$ did not show in vitro cytotoxicity against TC-1 tumor cells; however, an enhanced innate immune response including activation of dendritic cells was observed. Mice co-administered with ${\gamma}-PGA$ and L. casei-E7 showed significantly suppressed growth of TC-1 tumor cells and an increased survival rate in TC-1 mouse models compared to those of mice vaccinated with L. casei-E7 alone. The administration of ${\gamma}-PGA$ markedly enhanced the activation of natural killer (NK) cells but did not increase the E7-specific cytolytic activity of $CD8^+$ T lymphocytes in mice vaccinated with L. casei-E7. Overall, our results suggest that oral administration of ${\gamma}-PGA$ induces a synergistic antitumor effect in combination with L. casei-E7.