• Title/Summary/Keyword: L. buchneri

Search Result 27, Processing Time 0.02 seconds

The Influences of Addition of Sugar with or without L. buchneri on Fermentation and Aerobic Stability of Whole Crop Maize Silage Ensiled under Anaerobic Silos

  • Guan, Wu-tai;Driehuis, F.;van. Wikselaar, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1128-1133
    • /
    • 2002
  • The whole plant of crop maize was chopped and ensiled in airtight 1-L capacity glass jars to determine the influence of residual sugar on anaerobic yeast growth and on the fermentation of lactic acid by L. buchneri in whole crop maize silage. There were a total of six treatments used in this experiment as follow: added 25 g de-mineralised water per kg chopped maize serving as control (con), 37.5 g glucose solution containing 12.5 g glucose ($g_1$), 75 g glucose solution containing 25 g glucose ($g_2$), 25 g L. buchneri suspension intended for $10^6$ cfu $g^{-1}$ (L.b.), $g_1+L.b.$ and $g_2+L.b.$ All silos were stored in the dark at $20^{\circ}C$ until end of experiment. Jars were opened on duplicates at day 2, 7, 14, 28, 56 or triplicates at day 91 after ensiling for measuring the pH, microbiological enumeration and fermentative products. Results indicated that acidification rates for all silages were very fast, no difference occurred among treatments before day 28. After day 28 the pH values for silages inoculated by L. buchneri. with or without sugar tended to increase especially for treated only with L. buchneri, resulting in higher (p<0.01) finial pH than uninoculated silages. Compared with control silage, the added sugar significantly (p<0.01) increased dry matter (DM) loss, L. buchneri enhanced (p<0.01) DM loss further at different sugar existence. Silages inoculated by L. buchneri only or in combination with sugar addition contained less (p<0.01) lactic acid than the correspondent silages without inoculation with L. buchneri. In comparison with control, ethanol production is about 3 or 6 fold higher due to addition 12.5 or 25 g glucose per kg chopped maize at ensiling. The added sugar resulted in less acetic acid concentration (p<0.01) than control, but inoculation with L. buchneri increased (p<0.01) acetic acid than correspondent uninoculated silages at different sugar levels. No butyric acid and propionic acid were found in uninoculted silages, silages inoculated with L. buchneri. produced more propionic acid, 1-propanol and butyric acid. Lactobacilli counts were not influenced by added sugar, but increased (p<0.01) with inoculation of L. buchneri. The added sugar increased significantly (p<0.01) the yeast count, whereas L. buchneri showed the contrary effect. No differences were found in the aerobic stability among all treatments. In conclusions, 1) the added sugars encourage the growth of yeast and yeasts convert extra sugar into ethanol in maize silages. 2) The added sugars and L. buchneri do not influence the aerobic stability of silages stored in anaerobic silos.

Characteristics of Lactic Acid Production by Lactobacillus buchneri Isolated from Kimchi (김치에서 분리된 Lactobacillus buchneri의 젖산 생산 특성)

  • Sim, Hyun-Su;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.286-290
    • /
    • 2015
  • Lactic acid is a useful platform chemical for a wide range of food and industrial applications such as pharmaceuticals and cosmetics. Among 313 strains of lactic acid bacteria isolated from different traditional Korean fermented foods, eight Lactobacillus strains effectively utilized xylose as a carbon source to produce lactic acid. A lactic acid bacterium identified as Lactobacillus buchneri produced the highest amount of lactic acid from xylose under anaerobic conditions. The optimum xylose concentration and incubation temperature were 50 g/l and 37℃, respectively; under these conditions, 22.3 g/l lactic acid was produced.

The Influences of Addition of Sugar with or without L. buchneri on Fermentation and Aerobic Stability of Whole Crop Maize Silage Ensiled in Air-stress Silos

  • Guan, Wu-Tai;Driehuis, F.;Van Wikselaar, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1738-1742
    • /
    • 2003
  • The whole plant of crop maize was chopped and ensiled in double-layered polyethylene bags to determine the influence of residual sugar on the fermentation of lactic acid and aerobic stability by L. buchneri in whole crop maize silage made in airstress condition. There were a total of six treatments used in this experiment as follow: added 25 g de-mineralised water per kg chopped maize serving as control (con), 37.5 g glucose solution containing 12.5 g glucose ($g_1$), 75 g glucose solution containing 25 g glucose ($g_2$), 25 g, L,.buchneri suspension intended for $10^6$ cfu $g^{-1}$ (L.b.), $g_1$+L.b. and $g_2$+L.b. All silos were opened at day 91 after ensiling for measuring the pH values, microbiological enumeration, fermentative products and aerobic stability. The dry matter loss increased significantly (p<0.01) due to inclusion of sugar or L. buchneri. The lower lactic acid concentrations were observed (p<0.01) in silages inoculated with L. buchneri only or in combination with sugar addition than the correspondent uninoculated silages. Compared with control silage, ethanol production was about 3 or 6-fold higher due to addition 12.5 or 25 g glucose per kg chopped maize at ensiling. The silages added with sugar contained less acetic acid concentration (p<0.01) than control, but silages inoculated with L. buchneri showed the contrary effects (p<0.01) at different sugar levels. No butyric acid was found in uninoculated silages, silages inoculated with L. buchneri. producted more propionic acid, 1-propanol and butyric acid. Lactic acid bacteria counts increased markedly (p<0.01) due to inoculation with L. buchneri, whereas it was reduced (p<0.01) by added sugar. No significant difference was observed in count of yeast, but inoculation with L. buchneri shows a decreasing trend. Mould count in all silages was less than 2 (log cfu $g^{-1}$). The added sugar had negative effects on aerobic stability of maize silage made under air-stress conditions, whereas inoculation with L. buchneri improves (p<0.01) the aerobic stability.

Glycine max Merr enhances the viability and adhesion ability of Lactobacillus buchneri in gastrointestinal condition in vitro.

  • Seo, Jae-Bin;Park, Bog-Im;Myung, Hyun;Sim, Hyeon-Jae;Lee, Hoon-Yeon;Kim, Seong-Oh;Song, Kyoung-Ha;Lee, So-Jin;Cho, Jung Hee;Jeon, Yong-Deok;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.127-127
    • /
    • 2018
  • Probiotics are microorganisms that have beneficial effects on the health of the host. The health promoting effect by probiotics influences suppressing harmful bacteria, prevention of constipation, blood cholesterol reduction and regulation of blood pressure. Prebiotics are used to promote the growth or activity of microorganisms. Synbiotics, which are a mixture of probiotics and prebiotics, synergize in the intestines by complementing each other. Synbiotics not only improves the viability of the probiotics while passing through the gastrointestinal tract, maintain intestinal homeostasis, but also regulate balance of harmful and useful bacterial growth. Glycine max Merr (GMM) has been widely used in Asian countries to treat cancer, obesity, oxidative stress and imbalanced immune diseases. In addition, it has been reported that dietary fiber-rich grains promote bowel movements and prevent constipation. In this study, we investigated the viability of LactobacillIus buchneri (L.buchneri) strains, known as lactic acid bacteria under conditions of gastric fluid and intestinal fluid to determine the suitability of L.buchneri as probiotics. The adhesion ability of L.buchneri to caco-2 cells was also confirmed. The present studies showed that GMM extract promoted the growth and activity of L.buchneri strains as prebiotics. Also, this results suggested that the mixture of L.buchneri and GMM extract can helps maintain intestinal health and healthy body as synbiotics and health functional food material.

  • PDF

Isolation and Characterization of Lactobacillus buchneri Strains with High ${\gamma}$-Aminobutyric Acid Producing Capacity from Naturally Aged Cheese

  • Park, Ki-Bum;Oh, Suk-Heung
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.86-90
    • /
    • 2006
  • Two lactic acid bacteria (LAB) with high ${\gamma}$-aminobutyric acid (GABA)-producing capacity were isolated from naturally aged cheese. Examination of the biochemical features using an API kit indicated that the two strains belonged to Lactobacillus. They were gram positive, rod-type bacteria, and fermented arabinose, melezitose, melibiose and xylose, but did not utilize cellobiose or trehalose. 16S rDNA sequencing analysis confirmed that they were Lactobacillus buchneri and Lactobacillus sp. They were accordingly named as Lactobacillus buchneri OPM-1 and Lactobacillus sp. OPM-2, and could produce GABA from MRS broth supplemented with 10 g/L of monosodium glutamate (MSG) at a productivity of 91.7 and 116.7 mg/L/hr, respectively. Cell extracts of L. buchneri OPM-1 and Lactobacillus sp. OPM-2 showed glutamate decarboxylase (GAD) activity, for which the optimum pH and temperature were 5.5 and $30^{\circ}C$, respectively.

Characteristics of Persimmon Juice fermented with Kimchi Lactic Acid Bacteria (김치 유산균을 이용한 감 발효음료 특성)

  • Seo, Sang Young;Ahn, Min Sil;Choi, So Ra;Song, Eun Ju;Choi, Min Kyung;Yoo, Seon Mi;Kim, Young Sun;Song, Young Ju
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.1
    • /
    • pp.16-23
    • /
    • 2015
  • This study was carried out to develop a fermented juice using persimmon (Diospyros kaki Thunb) and lactic acid bacteria isolated from kimchi, Lactobacillus buchneri BK-1, Pediococcus inopinatus BK-3 and Leuconostoc mesenteroides M-17. The total acidity value was 0.75% and viable cell number reached $1.9{\times}10^8CFU/mL$ when the persimmon and water solution was diluted by 1:3 (w/v) added with rice-syrup ($15^{\circ}Brix$) that was fermented by Lactobacillus buchneri BK-1 for 7 days. Additional levels of rice-syrup increased the total acidity of fermented juice, and the overall acceptability was the highest (4.1 point) for fermented persimmon juice added with rice-syrup $10^{\circ}Brix$. L. buchneri BK-1 and Pediococcus inopinatus BK-3 were selected to ferment the persimmon juice because there total acidity values were 0.83% and 0.80%, respectively, and the final cell concentrations, $5.1{\times}10^8$ and $2.7{\times}10^8CFU/mL$, were more than other treatment, respectively. The total acidity value of persimmon at day 3 of fermented broth were significantly higher than that of day 7 of fermented broth, and the number of viable cell declined from $8.2{\times}10^8$ to $4.3{\times}10^8CFU/mL$. In these results, the suitable period for fermentation was 4~5 days owing to the sourness being strong during fermentation.

Effect of Lactobacillus buchneri 40788 and Buffered Propionic Acid on Preservation and Nutritive Value of Alfalfa and Timothy High-moisture Hay

  • Baah, J.;McAllister, T.A.;Bos, L.;Herk, F. Van;Charley, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.649-660
    • /
    • 2005
  • The effects of Lactobacillus buchneri 40788 and buffered propionic acid on preservation, intake and digestibility of alfalfa (Medicago sativa) and timothy (Phleum pratense) hay were investigated. During baling, forages were treated with L. buchneri 40788 (1.2${\times}$10$^6$ CFU/g) as a liquid (LLB) or as a granular preparation (GLB), with buffered propionic acid (10 mL/kg, BPA), or left untreated (control). Triplicate 500 kg round bales of each treatment were put up at two moisture levels for each forage: 17%${\pm}$0.33% and 20%${\pm}$0.30% for timothy and 17%${\pm}$0.20% and 19%${\pm}$0.27% for alfalfa (mean${\pm}$SD). Bales were sampled for chemical and microbiological analyses after 0, 30 and 60 d of storage. Compared to controls, all preservatives reduced (p<0.05) heating of both forages at all moisture levels with the exception of alfalfa baled at 19% moisture. After 60 d of storage, GLB reduced (p<0.05) moulds in 17% timothy hay as compared to other treatments, but at 20% moisture, moulds were reduced in LLB- and BPA-treated timothy as compared to controls. In alfalfa at 17% moisture, total bacteria were lower (p<0.05) in GLB-treated bales than LLB or control bales, but yeast and total bacteria were only reduced in BPA-treated alfalfa at 19% moisture. In situ DM disappearance of timothy (both moisture levels) and alfalfa (19% moisture level) increased (p<0.05) with LLB treatment compared to control. Digestibility of both forages did not differ (p>0.05) among treatments, however, voluntary DM intake of LLB-treated timothy (1.32 kg/d) was 22.3% higher (p<0.05) than control, and 14.1% higher than BPA-treated timothy. Treating timothy and alfalfa hay with L. buchneri 40788 or buffered propionic acid may improve the nutritive value of the hay when baled at 17 to 20% moisture.

Effect of Lactic acid bacteria and Enzyme Supplementation on Fermentative Patterns of Ensiling Silages, Their In vitro Ruminal Fermentation, and Digestibility (젖산균과 효소제 처리에 의한 동계사료작물 발효성상, In vitro 반추위 발효 및 소화율에 미치는 영향 연구)

  • Lee, A-Leum;Shin, Su-Jin;Yang, Jinho;Cho, Sangbuem;Choi, Nag-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • The objective of this study was to determine the effect of bacterial inoculation (Lactobacillus plantarum or combo inoculant mixed with Lactobacillus plantarum and Lactobacillus buchneri) and addition of fibrolytic enzyme on chemical compositions and fermentation characteristics of whole crop barley (WCB) and triticale (TRT) silage, their ruminal in vitro fermentation, and digestibility. In TRT silage, enzyme addition significantly (p<0.01) decreased NDF content compared to no enzyme addition treatment. Organic acids such as lactate and acetate contents in WCB and TRT silages were significantly (p<0.01) higher compared to those in the control. Particularly, lactate content was the highest in L. plantarum treatment. Fibrolytic enzyme treatment on both silages had relatively higher lactic acid bacteria content, while mold content was lower in both treatments compared to that in the control. In vitro dry matter digestibility was generally improved in WCB silages. It was higher (p<0.01) in TRT with mixed treatment of L. plantarum, L. buchneri, and enzyme compared to others. In vitro ruminal acetate production was relatively higher in treatments with both enzyme and inoculant additions compared to that in the control. Therefore, the quality of silage and rumen fermentation could be improved by inoculants (L. plantarum and L. buchneri) regardless whether whole crop barley (WCB) or triticale (TRT) silage was used. Although it was found that fibrolytic enzyme addition to both silages had various quality and rumen fermentation values, further study is needed.

A lower cost method of preparing corn stover for Irpex lacteus treatment by ensiling with lactic acid bacteria

  • Zuo, Sasa;Jiang, Di;Niu, Dongze;Zheng, Mingli;Tao, Ya;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.8
    • /
    • pp.1273-1283
    • /
    • 2020
  • Objective: This study investigated a method of preparing corn stover for Irpex lacteus (I. lacteus) treatment to improve its in vitro rumen degradability under non-sterile conditions. Methods: Corn stover was inoculated with Lactobacillus plantarum (L. plantarum), Lactobacillus buchneri (L. buchneri), and an equal mixture of these strains, and ensiled for 0, 3, 7, 14, and 28 days. After each period, a portion of the silage was sampled to assess the silage quality, and another portion of the silage was further treated with I. lacteus at 28℃ for 28 d. All the samples were analyzed for fermentation quality, chemical composition, and in vitro gas production (IVGP) as a measure of rumen fermentation capacity. Results: Lactic acid bacteria (LAB) was found to improve the silage quality of the corn stover, and the corn stover silage inoculated with L. plantarum produced more lactic acid and higher IVGP than other silage groups. The I. lacteus colonies flourished in the early stage of corn stover silage, especially on the 3-d corn stover silage inoculated with both L. plantarum and L. buchneri. This led to an 18% decrease in the acid detergent lignin content, and a 49.6% increase in IVGP compared with the raw stover. Conclusion: The combination of ensiling with the mixed LAB inoculation and I. lacteus treatment provided a cost-effective method for the improvement of the IVGP of corn stover from 164.8 mL/g organic matter (OM) to 246.6 mL/g OM.

Evaluating fermentation quality, in vitro digestibility and aerobic stability of a total mixed ration ensiled with different additives on Tibet plateau

  • Dong, Zhihao;Wang, Siran;Zhao, Jie;Li, Junfeng;Liu, Qinhua;Bao, Yuhong;Shao, Tao
    • Animal Bioscience
    • /
    • v.34 no.2
    • /
    • pp.223-232
    • /
    • 2021
  • Objective: To investigate the improvement in utilization efficiency of total mixed ration (TMR) on Tibetan plateau, TMR were ensiled with different additives. Methods: A total of 150 experimental silos were prepared in a completely randomized design to evaluate the six treatments: i) control (without additive), ii) Lactobacillus buchneri (L. buchneri), iii) acetic acid, iv) propionic acid, v) 1,2-propanediol; and vi) 1-propanol. After 90 days of ensiling, silos were opened for fermentation quality and in vitro analysis, and then subjected to an aerobic stability test for 14 days. Results: Treating with L. buchneri, acetic acid, 1,2-propanediol and 1-propanol decreased propionic acid contents and yeast number, whereas increased (p<0.05) pH, acetic acid and ethanol contents in the fermented TMR. Despite increased dry matter (DM) loss in the TMRs treated with 1,2-propanediol and 1-pronanol, additives did not affect (p>0.05) all in vitro parameters including gas production at 24 h (GP24), GP rate constant, potential GP, in vitro DM digestibility and in vitro neutral detergent fibre digestibility. All additives improved the aerobic stability of ensiled TMR to different extents. Specially, aerobic stability of the ensiled TMR were substantially improved by L. buchneri, acetic acid, 1,2-propanediol, and 1-propanol, indicated by stable pH and lactic acid content during the aerobic stability test. Conclusion: L. buchneri, acetic acid, 1,2-propanediol, and 1-propanol had no adverse effect on in vitro digestibility, while ensiling TMR with the additives produced more acetic acid and ethanol, subsequently resulting in improvement of aerobic stability. There is a potential for some fermentation boosting additives to enhance aerobic stability of fermented TMR on Tibetan plateau.