• Title/Summary/Keyword: L-joint

Search Result 619, Processing Time 0.03 seconds

Overuse Capsuloligamentous Injury of the First Metatarsophalangeal Joint: A Case Report

  • Park, Jihong;Grindstaff, Terry L.
    • Journal of Korean Foot and Ankle Society
    • /
    • v.19 no.3
    • /
    • pp.128-131
    • /
    • 2015
  • Capsuloligamentous injury at the first metatarsophalangeal (MTP) joint is a common traumatic injury during physical activity, particularly on artificial turf. Mechanism of injury include excessive flexion, extension, or valgus stress. We report a non-operatively treated capsuloligamentous injury at the first MTP joint, which did not occur traumatically but developed by a stress-related mechanism in a collegiate rower.

Optimization of L-shaped Corner Dowel Joint in Modified Poplar using Finite Element Analysis with Taguchi Method

  • Ke, Qing;Zhang, Fan;Zhang, Yachi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.204-217
    • /
    • 2016
  • Modified poplar has emerged as a potential raw material for furniture production. Lack of specific modified poplar strength information; however, restricts applications in the furniture industry especially as related to strength in corner-joints. Optimization of strength in L-shaped corner dowel modified poplar joints under compression loads utilizing finite element analysis (FEA) by Taguchi method with the focus of this study. Four experiment factors (i.e., Structure Style, Tenon Length, Tenon Diameter, and Tenon Gap), each at three levels, were conducted by adopting a $L_9-3^4$ Taguchi orthodoxy array (OA) to determine the optimal combination of factors and levels for the von Mises stress utilizing ANSYS software. Results of Signal-to-Noise ratio (S/N) analysis and the analysis of variance (ANOVA) revealed the optimal L-shaped corner dowel joint in modified poplar is $45^{\circ}$ Bevel Butt in structure style, 24 mm in tenon length, 6 mm in tenon diameter, and 20 mm in tenon gap. Tenon length and tenon gap are determined to be significant design factors for affecting von Mises Stress. Confirmation tests with optimal levels and experimental test indicated the predicted optimal condition is comparable to the actual experimental optimal condition.

Effects of NOS Inhibitors on Arthritis and Arthritic Pain in Rats

  • Min, Sun-Seek
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.6
    • /
    • pp.253-257
    • /
    • 2007
  • Among the arthritis symptoms, chronic pain is the most serious, and it can profoundly affect the quality of human life. Unfortunately, the mechanism of development in arthritis and arthritic pain has not yet been precisely elucidated. Accumulating evidence indicates that nitric oxide (NO) plays a pivotal role in nociceptive processing in the spinal cord. However, the modulation mechanism of NO in the peripheral site of arthritis and arthritic pain has not been clarified. Therefore, I determined in the present study which nitric oxide synthase (NOS) was involved in the induction of arthritis and arthritic pain. Monoarthritis was induced by intra-articular injection of carrageenan (2%, $50{\mu}l$) into rats, and resulted in the reduction of weight load on the injected leg, increase of knee joint diameter and inflammatory response. Pre-treatment of rats with L-N6-(1-iminoethyl)-lysine (L-NIL, $500{\mu}g$, in $50{\mu}l$), an inhibitor of inducible NOS (iNOS), partially prevented the induction of pain-related behavior and partially reduced inflammatory response in the synovial membrane in the knee joint. These results suggest that iNOS in the knee joint may play an important role in the induction of pain-related behavior and inflammation, and that NO produced by iNOS may be associated with nociceptive signaling in the peripheral site.

Effect of Spew Fillet on Failure Strength Properties of Natural Fiber Reinforced Composites Including Adhesive Bonded Joints (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 접착제 필릿의 영향)

  • Yoon Ho-Chel;Choi Jun-Yong;Kim Yong-Jig;Lim Jae-Kyoo
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.67-71
    • /
    • 2005
  • This paper is concerned with a study on fracture strength of composites in an adhesive single lap joint. The tests were carried out on joint specimens made with hybrid stacked composites consisting of the polyester and bamboo natural fiber layer. The main objective of this work was to evaluate the fracture properties adjacent to adhesive bonded joint of natural fiber reinforced composite specimens. From the results, natural fiber reinforced composites have lower tensile strength than the original polyester. But tensile-shear strength of natural fiber reinforced composites with bamboo layer far from adhesive bond is as high as that of the original polyester adhesive bonded joints. Spew filet at the end of the overlap reduced the stress concentration at the bonded area. Spew fillet and position of bamboo natural fiber layer have a peat effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.

Assessment of Lumbar Spine Kinematics by Posterior-to-Anterior Mobilization

  • Oh, Kang O;Lee, Sang-Yeol
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.4
    • /
    • pp.450-456
    • /
    • 2021
  • Objective: Studies confirming the lumber spine kinematics of direct or indirect segmental mobility under the application of joint mobilization, which induces passive force on the spine, are insufficient.Therefore, this study aims to obtain the underlying clinical data by identifying direct or indirect segmental mobility produced by Maitland's PA mobilization technique. Design: Randomized controlled trial design. Methods: Thirty subjects with no back pain participated in this study. X-ray testing equipment (SIG-40-525, Ecoray Inc., Korea) was used to verify the segmented movement of their lumbar. Joint mobilization was performed by physiotherapists with more than 10 years of experience in prescription therapy, and radiography was performed once without PA joint mobilization and once without the mobilization for comparing the lumbar vertebrae before and after the mobilization. The radiographs taken were analyzed using the picture archiving and communication system (PACS) program to measure the spinal displacement, intervertebral height, intervertebral angle, and lumbar lordosis angle. Results: Significant differences were observed in the lumbar displacement, intervertebral angle, and lumbar lordosis angle in all lumbar vertebrae before and after the mobilization. The intervertebral height indicated significant differences in all ventral vertebrae and only in L3-L4 and L4-L5 in dorsal vertebrae. Conclusions: This study suggests that the segmental mobility produced through indirect approaches plays an important role in inducing therapeutic effects in patients with back pain.

Shear performance of AAC masonry triplets strengthened by reinforcing steel wire mesh in the bed and bed-head joint

  • Richard Badonbok Lyngkhoi;Teiborlang Warjri;Comingstarful Marthong
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.149-160
    • /
    • 2023
  • Over the course of the last 4-5 years, India's northeastern region have widely used Autoclaved Aerated Concrete (AAC) blocks to construct load-bearing masonry structures. The aim of this investigation is to examine the shear characteristics of AAC masonry triplet assemblage strengthened by using two techniques, i.e., the bead joint (BJ) and the bed-head joint (BHJ) technique. Three unique variations of wire mesh were involved in the strengthening method. Furthermore, three strengthening configurations were used to strengthen each of the three wire mesh variations and the two-strengthening method, i.e. (-), L and (Z) configuration. The unreinforced and reinforced triplet masonry wallets were tested under direct shear test. From the results obtained, the 'BJ'triplet masonry wallets observed an enhanced in shear strength of about 2.23% to 23.33 % whereas the 'BHJ' triplet masonry wallets observed an enhanced in shear strength of about 22.92% to 50.69%. The "BHJ" strengthening method effectively enhance the shear strength of the triplet masonry wallets compared to the "BJ" and the "UR" wallets with an increase in capacity as the wire mesh strength increases. Furthermore, in terms of the strengthening configuration, the (Z) configuration performs better, followed by the (L) and (-) configuration demonstrating the strengthening configuration effectiveness.

Shear behaviour of AAC masonry reinforced by incorporating steel wire mesh within the masonry bed and bed-head joint

  • Richard B. Lyngkhoi;Teiborlang Warjri;Comingstarful Marthong
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.363-382
    • /
    • 2024
  • In India's north-eastern region, low-strength autoclaved aerated concrete (AAC) blocks are widely used for constructing masonry structures, making them susceptible to lateral forces due to their low tensile and shear strengths and brittleness nature. The absence of earthquake-resistant attributes further compromises their resilience during seismic events. An economically viable solution to enhance the structural integrity of these masonry structures involves integrating steel wire mesh within the masonry mortar joints. This study investigates the in-plane shear behaviour of AAC masonry by employing two approaches: incorporating steel wire mesh within the masonry bed joint "BJ" and the masonry bed and head joint "BHJ". These approaches aim to augment strength and ductility, potentially serving as earthquake-resistant attributes in masonry structures. Three distinct variations of steel wire mesh and three reinforcing arrangements, i.e. (-), (L) and (Z) arrangement were employed to reinforce the two approaches. The test result reveals a significant enhancement in structural performance upon inclusion of steel wire mesh in both reinforcing approaches, with the "BHJ" approach outperforming the "BJ" approach and the unreinforced masonry, along with increase in capacity as the wire mesh size increases. Furthermore, the effectiveness of the reinforcing arrangement is ranked with the (Z) arrangement showing the largest performance, followed by the (L) and (-) arrangement.

Decentralized Adaptive Controller Design for Manipulators (매니퓰레이터의 비집중 적응 제어기 설계)

  • Lyou, Joon;Hwang, Suk-Young
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.31-35
    • /
    • 1992
  • This paper presents a decentralized adaptive controller design for a robot manipulator to track the given desired trajectory in the joint space. The controller is of distributed structure and does not require the complex manipulator dynamic model, thereby it is computationally very efficient. Each joint is independently controlled by a PID feedback part and a velocity-acceleration feedforward part. Simulation results for a two-link direct drive manipulator conform that the proposed decentralized scheme is feasible.

  • PDF

Development of Hip Joint Mechanical Stem for Minimally Invasive Surgery (최소침습술을 위한 고관절 메커니컬 스템의 개발)

  • Lee, Sunghyun;Bae, Ji-Yong;Jeon, Insu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.703-708
    • /
    • 2013
  • Conventional total hip joint replacement(THR) surgery requires a long incision and long rehabilitation time. The stem used in THR is inserted into the cancellous bone of the femur where it plays the role of the artificial joint. Minimally invasive surgery(MIS) has been devised to reduce muscle damage to patients. In this study, a mechanical stem was developed on the basis of MISto reduce the incision length through the principle of the gear. The mechanical stem consists of six components. A prototypical model for a mechanical stem was fabricated using an acryl-based polymer, and its workability was confirmed. To actualize the mechanical stem, a three-dimensional Bio-CAD modeling technique was applied. The hip joint area based on computed tomography(CT) was reconstructed. The safety of the mechanical stem by applying more load than the weight of a man under virtual surgery environment conditions was confirmed by finite element analysis.

Experimental Assessment of Bolted Single Lap Joint Strength for Laminates in Advanced Composite Materials (첨단복합재료 적층판의 볼트단일접합 강도 시험적 평가)

  • Lee, Myoung Keon;Lee, Jeong Won;Yoon, Dong Hyun;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.983-989
    • /
    • 2017
  • This paper presents the bearing strength for laminates in advanced composite materials in bolted joints. Bolted single lap joint tests were experimentally investigated with respect to stabilized and unstabilized lap joints. Stabilized bolted single lap joints refer to joints with out-of-plane rotational constraints. Unstabilized bolted single lap joints refer to joints with absence of out-of-plane deflection constraints. The bearing strength values of laminates in the bolted joint showed that the percentages of ply angle for 0, 45, -45, and 90 degrees were not affected. The bearing strength value in the unstabilized bolted joint was smaller than the bearing strength value in the stabilized bolted joint because of the influence of the out-of-plane behavior. The composite material studied in this paper is a carbon/epoxy unidirectional (UD) tape prepreg cured at $177^{\circ}C(350^{\circ}F)$. In the laminate reference system, the standard angles of 0, 45, -45, and 90 degrees were used for ply orientation within the laminate. A total of 112 bolted single lap joint tests were conducted on specimens from eight distinct laminates. The ASTM-D-5961M standards were adhered to for the stabilized and unstabilized bolted single lap joint tests.