• Title/Summary/Keyword: L-arabitol

Search Result 5, Processing Time 0.018 seconds

Microbiological Purification of L-Arabitol from Xylitol Mother Liquor

  • Jiang, Mingguo;Wang, Ben;Yang, Lifang;Lin, Shuangjun;Cheng, Hairong
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.43-49
    • /
    • 2011
  • As a rare sugar alcohol, L-arabitol can be used in food and can prevent extra fat deposits in the intestinal tract. Commercially, L-arabitol is prepared from pure L-arabinose by hydrogenation, which needs a high temperature and high pressure, leading to a high production cost for Larabitol. Therefore, this study describes a novel L-arabitol production method based on biological purification from the xylitol mother liquor, a cheap and readily available raw material that contains a high concentration of Larabitol. First, a novel Bacillus megaterium strain was screened that can utilize xylitol, sorbitol, and mannitol, yet not L-arabitol. The isolated strain was inoculated into a medium containing the xylitol mother liquor under formulated culture conditions, where a high L-arabitol yield (95%) and high purity (80%) were obtained when the medium was supplemented with 50 g/l of xylitol mother liquor. Upon further purification of the fermentation broth by ion exchange and decolorization, L-arabitol was crystallized with a purity of 98.5%.

Effects of Ethylene Oxide and Gamma Energy on the Flavor-Related Components of Mushrooms (Lentinus edodes) (표고버섯의 향미관련 성분에 대한 에틸렌옥시드와 감마에너지의 영향)

  • 권중호;변명우;정신교;조한옥
    • Journal of Food Hygiene and Safety
    • /
    • v.7 no.1
    • /
    • pp.7-14
    • /
    • 1992
  • Flavor-related components were analyzed for dried oak mushrooms (Lentinus edodes) when subjected to ethylene oxide and gamma energy. Volatile flavor components identified by GC and GC-MS were composed primarily of l-oden-3-ol (72.8%), 3-octanone (11.5%) and dimethyl disulfide (6.7%). Most of volatile components were shown labile to the standard cycle of ethylene oxide and 5 kGy-gamma energy, while insignificant changes were observed in the contents of free sugars (mannitol, arabitol, trehalose) and free amino acids. Instrumental analysis have shown, however, that the deterimental effects on flavor-related components were more apparent in EO-fumigated groups than in gamma-irradiated ones, even though the organo-leptic test revealed no significant differences between treated samples and the corresponding control.

  • PDF

PRODUCTION OF SOME METABOLITES BY DEBARYOMYCES HANSENII DURING GROWTH UNDER DIFFERENT STRESSES

  • Praphailong, W.;Fleet, G.H.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.171-171
    • /
    • 1998
  • The metabolic behavior of Debaryomyces hansenii was investigated in terms of substrate utilization and by product formation under different cultural conditions. Debaryomyces hansenii exhibited best growth and most tolerant of increased NaCl, sucrose and potassium sorbate at their optimum pH (5.0). A combination of two or more environmental stresses had stronger inhibitory effects on their growth kinetics, utilization of carbohydrate substrates and the production of organic acids, volatile compounds and other metabolites. Significant amounts of glycerol (0.35-4.4 g/L) and arabitol (0.08-9.8 g/L) were produced by D. hansenii. The main organic acids produced were citric (0.6-1.4 g/L), acetic (0.3-2.8 g/L), fumaric (0.2-1.0 g/L) and malic acids (1.1-1.7 g/L). A range of other compounds such as ethyl acetate, n-propanol, isoamyl alcohol, 2-phenylethanol and acetoin were also produced. The concentration of these compounds varied with the cultural conditions. Such compounds would have specific impacts on food quality in which D. hansenii is found.

  • PDF

Biological Active Substance Produced by a Strain of Streptomyces sp. (Part.III) Purification and Nutritional Requirement. (Streptomyces 속 균주가 생성한 물질의 생물활성 (제삼보) 정제 및 영양요구성)

  • 송방호;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.1
    • /
    • pp.36-45
    • /
    • 1977
  • A piscicidal substance was isolated from the culture medium of Streptomyces umbrosus by avicel column chromatography and avicel thin layer chromatography after extration with chroloform. Bluegreen fluorescence was emitted under UV irradiation. Factors which govern toxin production and nutrition requirement for high toxin titres were observed. Nutritional uptake for toxin production was not curresponded with that for cell growth. Alanine, valine, serine asparagine, arginine, histidine, urea and sodium nitrate as a carbon source and glucose, mannose, rhamnose, xylose, arabitol and starch as a carbon source were recognized as a favorable nutrient for high toxin production. Magnesium was essential factor whereas vitamins were not of effective. Most of toxin was formed simultaneously with cell growth in esponential phase. Maximal production was observed for six day culture at 3$0^{\circ}C$. Tissues of gill, kidney and pnacreas in Cyprinus carpio were denatured extreamly after treating with the substance. Atrophied nucleous, indented membrane and degradated cytoplasm with necrotic affectness were noted on each tissue. The chemical formula of the substance was designated as $C_{38}$ $H_{66}$ $NO_4$.

  • PDF

Studies on the Production of Intra- and Extra-cellular Lipids by the Strains in the Genus RHODOTORULA (Rhodotorula 속(屬) 균주(菌株)에 의(依)한 세포(細胞) 내외(內外) 지질생산(脂質生産)에 관(關)한 연구(硏究))

  • Park, Sung-Oh
    • Applied Biological Chemistry
    • /
    • v.17 no.2
    • /
    • pp.93-116
    • /
    • 1974
  • A potent intracellular-lipid-producing yeast, Rhodotorula glutinis var. glutinis SW-17, was screened out from a variety of arable soils, compost heaps, and fodders, and two strains of excellent extracellular-lipid-producing yeasts, Rhodotorula glutinis var. glutinis SW-5 and Rhodotorula graminis SW-54, were screened out from the surface of many species of leaves. And then the intra- and extra-cellular lipid productions by those Rhodotorula yeasts were studied. The results were as follows: 1. During the shaking culture of 8 days at $24^{\circ}C$, both the intra- and extra-cellular lipid accumulation started almost at the stationary phase of growth, when the nitrogen source in the medium was a little more than half used up. The intracellular lipid production by Rhodotorula glutinis var. glutinis SW-17 reached 58.42% (w/w) of dried yeast, and the extracellular lipid production by Rhodotorula graminis SW-54 amounted to 2.62g per liter of the medium. 2. After the carbon and nitrogen sources in the medium were almost consumed, if the yeasts were shake-cultured further in a state of starvation, the yeast cells re-utilized the already produced intra- and extra-cellular lipids and the lipids completely disappeared in the medium in about 90 days. 3. The relative concentration of carbon and nitrogen sources in the media greatly influenced both the intra- and extra-cellular lipid production. When the nitrogen source in the medium was almost used up for the growth of yeast, and excess carbon sources were still available, the lipid production vigorously proceeded. As long as the nitrogen source concentration in the medium was high, the lipid production was greatly suppressed. 4. The optimum pH for both the intra- and extra-cellular lipid production by those yeasts was pH 5.0-6.0. 5. The fatty acid components of the intracellular lipid of Rhodotorula glutinis var. glutinis SW-17 were myristic, palmitic, palmitoleic, stearic, oleic, linoleic, and linolenic acids. The largest components of the fatty acids were palmitic acid equivalent to 30-45% of the whole fatty acids and oleic acid equivalent to 35-50%. 6. The fatty acid components of the extracellular lipid of Rhodotorula glutinis var. glutinis SW-5 and Rhodotorula graminis SW-54 were myristic, palmitic, stearic, oleic, linoleic, linolenic, 3-D-hydroxypalmitic, and 3-D-hydroxystearic acids. The largest components of the fatty acids were 3-D-hydroxypalmitic acid equivalent to 22-25% of the acids and 3-D-hydroxystearic acid equivalent to 13-17%. 7. The polyol component of the intracellular lipids was only glycerol, whereas the polyols of extracellular lipids were glycerol, mannitol, xylitol and arabitol.

  • PDF