• Title/Summary/Keyword: L-L actuator

Search Result 139, Processing Time 0.023 seconds

Design of Rotating Moving-Magnet-Type VCM Actuator for Miniaturized Mobile Robot (소형 이동 로봇을 위한 회전형 보이스 코일 구동기 개발)

  • Shin, Bu Hyun;Lee, Seung-Yop;Lee, Kyung-Min;Oh, Dongho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1529-1534
    • /
    • 2013
  • A voice coil actuator with a rotating moving magnet has been developed for a miniaturized mobile robot. The actuator has simple structure comprising a magnet, a coil, and a yoke. Actuator performance is predicted using a linearized theoretical model, and dynamic performance based on the air-gap between the magnet and the coil is predicted using motor constant and restoring constant obtained through finite element simulations. The theoretical model was verified using a prototype with 60 Hz resonance and 80 Hz bandwidth. We found that an input of 1.5 V can make the actuator rotate by $20^{\circ}$ statically. The driving configuration of the proposed actuator can be simplified because of its implementation of open-loop control.

Development of Active Control System for Structural Vibration Using a Hydraulic Actuator (유압식 Actuator를 이용한 구조물 진동의 능동제어시스템 개발)

  • S.J. Moon;T.Y. Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.94-102
    • /
    • 1995
  • The active control system of structural vibration using a hydraulic actuator is developed. The developed system consists of three parts : a hydraulic unit, an actuator unit and a control unit. Structural vibration is sensored by the accelerometer attached to the structure and reduced by the optimally controlled motion of active mass giving anti-phase inertia force to the structure. It is experimentally confirmed that the vibration level of model structure is reduced to about 1/6 by the developed active control system.

  • PDF

Robust Control of Vibration Using shape memory alloy actuator (형상기억합금 액추에이터를 이용한 강건한 진동제어)

  • ;Koval, L. R.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.263-270
    • /
    • 1995
  • The use of the shape memory alloy, Nitinol wire, is investigated as an actuator for enhancing the damping in structural vibration systems. The first-order mathematical model of the Nitinol wire is obtained from the experimental data for an actuator. Finite element method is utilized for the strain gage sensor model, which is installed at the root of cantilever beam. A simple system, cantilever beam, is built as a flexible structural system to implement a control law with the Nitinol wire actuator. The system model including sensor and actuator is derived, which agrees with the experimental results. The actuator dynamics is augmented with the system so as to design PI controller and the one of robust controllers, LQG/LTR controller, and the control laws are implemented experimentally. The experimental study shows the feasibility of utilizing the Nitinol wire as an actuator for the purpose of vibration control.

Design and Analysis of Linear Vibration Motor Equipped with Permanent-Magnet Springs and Voice-Coil Actuators (영구자석 스프링과 보이스 코일 구동기를 가진 직선형 진동모터의 설계 및 해석)

  • Choi, Jung-Kyu;Yoo, Seong-Yeol;Noh, Myounggyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.359-364
    • /
    • 2013
  • In order to use a linear vibration motor for the actuator of a haptic interface, the motor must provide a higher reaction rate and longer service life than typical rotational motors with an eccentric mass. In this paper, we propose a linear vibration motor that is equipped with a voice-coil actuator and permanent-magnet springs. To concentrate the magnetic flux in the actuator, a Halbach-style magnetization pattern is used. Permanent-magnet springs replace mechanical springs to help increase the service life. We use the method of equivalent current sheets and the method of images to analyze and model the proposed vibration motor. These methods are validated using finite element analyses and experiments. A prototype motor is designed and fabricated. Tests with the prototype show the feasibility of the proposed linear vibration motor.

Electric energy harvesting using piezoelectric actuator driven by geared motor (압전 액추에이터를 이용한 에너지 수확)

  • Yun, So-Nam;Kim, Dong-Gun;Ham, Young-Bog;Park, Jung-Ho;Choi, Sang-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1463-1468
    • /
    • 2007
  • This paper presents the possibility of the electric energy harvesting using piezoelectric actuator which is operated by geared motor. The geared motor consisting of oval shape cam and speed controller was operated in the range of 40${\sim}$172rpm. The PZT actuator of $36L{\times}13W{\times}0.6H$ was used for energy harvesting and the results of the theoretical model were verified by comparing it with the measured response of a experimental setup. Experimental study for obtaining the optimal operating conditions, such as displacement variation of the PZT actuator and motor speed variation, was achieved. A power of 0.02mW at the geared motor speed of 172rpm and the PZT actuator maximum displacement of $500{\mu}m$ was measured. In this study, it was confirmed that the wind power can be used for MEMS based sensor operating and windmill health monitoring one.

  • PDF

Development of Power Driver for PVDF Film Actuator Applied to Dehydration of Dredged Sediment (준설토 탈수에 적합한 PVDF Film Actuator 구동용 파워 드라이버 개발)

  • Kim, Dae-Sun;Kim, Min-Kyu;Kim, Young-Uk;Kim, Jung-Kuk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.2
    • /
    • pp.26-37
    • /
    • 2012
  • In this study, a power driver for actuating PVDF film that has the characteristic of dramatic impedance change caused by size and operating frequency variation was developed to dehyance rate of dredged sediment. In order to supply maximum energy to the PVDF film, a full-bridge circuit implemented using IGBT with a R-L-PVDF film impedance matching circuit was designed and constructed. the dehydration capabilities of the PVDF film actuated by the developed driver cleary was tested for dredged sediment. It was found that the PVDF film actuated by the developed driver cleary enhanced dehydration, avout three times faster during the first 3 minutes, compared to natural dehydration. The result of the experiment confirmed that the developed power driver for actuating Pvdf film could be used effectively for dehydration of dredged sediment.

Fabrication and Electromechanical Behaviors of a SWNT/PANi Composite Film Actuator (탄소나노튜브/도전성폴리머 복합재 엑츄에이터의 제조 및 특성실험)

  • Zhang, Shuai;Kim, Cheol
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.7-11
    • /
    • 2006
  • The improved SWNTs/PANi composite actuator films applicable to an artificial muscle were fabricated successfully using a new process of manufacture that consists of 90% pure single-walled carbon nanotubes (SWNT) and chemical polymerization. PANi is electrically conducting polyaniline polymer. The conductivities of the composite SWNTs/PANi film-type actuators and the pure PANi films fabricated were measured as 56.15 S/cm and 17.38 S/cm, respectively, by the 4-prove method. The conductivity of the composite actuator is 3.2 times higher than the pure PANi film. The fabricated composite actuator showed higher conductivity than any other similar ones. The quality of samples was investigated by an electron scanning microscope (SEM). To measure the actuating strains, a specially designed beam balance apparatus was developed and strains of the composite actuators was measured by a laser displacement sensor subjected to electric currents. During the operation, the sample was soaked in the $NaNO_3$ solution and the sine-wave voltage in the range of $+1V{\sim}-1V$ was applied. The length of the composite actuator changed from $l_0=12.690$ mm to $l_1=12.733$ so that the change of length was l=0.043 mm and the strain was 0.34 %. This is a very high strain for this kind of a composite actuator. Other result reported by Tahhan showed 0.23 % strain, so that the present result is improved by 48%.

Design and Dynamic Characteristic Analysis of Moving Coil type L.O.A (Moving Coil Type L.O.A의 설계 및 동특성 해석)

  • Kang, Kil-Whan;Kim, Duk-Hun;Hong, Jung-Pyo;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.155-157
    • /
    • 1998
  • The Moving Coil type Linear Oscillatory Actuator(MC-LOA) is widely used in system needed reciprocation of short stroke. MC-LOA is suitable for high speed operation and correctness stroke control. This paper designed a MC-LOA to combine mechanical dynamic equation with electric dynamic equation. Electric dynamic equation was obtained from equivalent circuit and the parameters were obtained using Finite Element Method (FEM). Then, we analyzed the dynamic and steady state characteristics of the designed MC-LOA.

  • PDF

Analysis on the Characteristics of a flat moving core type LOA (평판 가동철심형 LOA의 특성해석)

  • Jang, S.M.;Seo, J.H.;Kim, H.G.;Park, H.C.;Park, C.I.;Jeong, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.50-52
    • /
    • 1996
  • The exiting apparatus for rectilinear reciprocating motion has low efficiency because of various mechanical converting equipments from rotary motion. The LOA(Linear Oscillation Actuator) is the rectilinear reciprocating actuator. This paper shows the operating principle of bifiler winding LOA and the comparison the characteristics of thrust force of no tapered moving core type LOA with the tapered one. Through FEM analysis tapered LOA has the lower peak force and longer stroke than no tapered LOA.

  • PDF

Torque Analysis of Rotary Actuator Using Equvalent Magnetic Circuit method in combination with finite element method (등가자기회로법과 유한요소법을 이용한 액츄에이터의 토크특성 해석)

  • Kim, Young-Kyoun;Hong, Jung-Pyo;Kim, Je-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.605-607
    • /
    • 2000
  • Although Equvalent Magnetic Circuit (EMC) method. Using lumped parameter and numerical analysis method are widely used for electric machine analysis. these are neither always accurate enough nor sometimes available to easily use. Moreover three dimensional finite element method (3D-FEM) is inherently unsuitable for electric machine performance evaluation due to its poor computational efficiency, such as too long calculation time and difficulty in modeling for analysis. In this paper, Nonlinear Equivalent Magnetic Circuit (NEMC) method in combination with 2D-FEM is proposed to analyze the electric machine requiring 3D-FEM, and this method applys to torque evaluation for rotary actuator of Electro Magnetic Electronic Controller Power Steering (EM-ECPS).

  • PDF