• Title/Summary/Keyword: Kwangyang gold-silver mine

Search Result 2, Processing Time 0.021 seconds

Geochemical transport and water-sediment partitioning of heavy metals in acid mine drainage, Kwangyang Au-Ag mine area, Korea

  • Jung, Hun-Bok;Yun, Seong-Taek;Kwon, Jang-Soon;Lee, Pyeong-Koo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.409-412
    • /
    • 2003
  • Total extraction of stream sediments in the Kwangyang mine area shows their significant pollution with most trace metals such as Cr, Co, Fe, Pb, Cu, Ni, Zn and Cd, due to sulfide oxidation in waste dumps. Calculations of enrichment factor shows that Chonam-ri creek sediments are more severely contaminated than Sagok-ri sediments. Using the weak acid (0.1N HCl) extraction and sequential extraction techniques, the transport and sediment-water partitioning of heavy metals in mine drainage were examined for contaminated sediments in the Chonam-ri and Sagok-ri creeks of the Kwangyang Au-Ag mine area. Calculated distribution coefficient (Kd) generally decreases in the order of Pb $\geq$Al > Cu > Mn > Zn > Co > Ni $\geq$ Cd. Sequential extraction of Chonam-ri creek sediments shows that among non-residual fractions the Fe-Mn oxide fraction is most abundant for most of the metals. This indicates that precipitation of Fe hydroxides plays an important role in regulating heavy metal concentrations in water, as shown by field observations.

  • PDF

Gold-Silver Mineralization in the Kwangyang-Seungju Area (광양-승주지역 금은광상의 광화작용)

  • Lee, Chang Shin;Kim, Yong Jun;Park, Cheon Yong;Ko, Chin Surk
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.145-154
    • /
    • 1993
  • Gold-silver deposits in the Kwangyang-Seungju area are emplaced along $N4^{\circ}{\sim}10^{\circ}W$ to $N40^{\circ}{\sim}60^{\circ}W$ trending fissures and fault in Pre-cambrian Jirisan gneiss complex or Cretaceous diorite. Mineral constituents of the ore from above deposits are composed mainly of pyrite, arsenopyrite, pyrrhotite, magnetite, sphalerite, chalcopyrite, galena and minor amount of electrum, tetrahedrite, miargyrite, stannite, covellite and goethite. The gangue minerals are predominantly quartz and calcite. Gold minerals consist mostly of electrum with a 56.19~79.24 wt% Au and closely associated with pyrite, chalcopyrite, miargyrite and galena. K-Ar analysis of the altered sericite from the Beonjeong mine yielded a date of $94.2{\pm}2.4\;Ma$ (Lee, 1992). This indicates a likely genetic tie between ore mineralization and intrusion of the middle Cretaceous diorite ($108{\pm}4\;Ma$). The ${\delta}^{34}S$ values ranged from +1.0 to 8.3‰ with an average of +4.4‰ suggest that the sulfur in the sulfides may be magmatic origin. The temperatures of mineralization by the sulfur isotopic composition with coexisting pyrite-galena and pyrite-chalcopyrite from Beonjeong and Jeungheung mines were $343^{\circ}C$ and $375^{\circ}C$ respectively. This temperature is in reasonable agreement with the homogenization temperature of primary fluid inclusion quartz ($330^{\circ}C$ to $390^{\circ}C$; Park.1989). Four samples of quartz from ore veins have ${\delta}^{18}O$ values of +6.9~+10.6‰ (mean=8.9‰) and three whole rock samples have ${\delta}^{18}O$ values of +7.4~+10.2‰ with an average of 7.4‰. These values are similar with those of the Cretaceous Bulgugsa granite in South Korea (mean=8.3‰; Kim et al. 1991). The calculated ${\delta}^{18}O_{water}$ in the ore-forming fluid using fractionation factors of Bulgugsa et al. (1973) range from -1.3 to -2.3‰. These values suggest that the fluid was dominated by progressive meteoric water inundation through mineralization.

  • PDF