• Title/Summary/Keyword: Kunitz Trypsin Inhibitor

Search Result 33, Processing Time 0.05 seconds

Independent Inheritance between df2 gene and ti gene in Soybean

  • Han, Eun-Hui;Sung, Mi-Kyung;Kim, Kyung-Roc;Park, Jung-Soo;Nam, Jin-Woo;Chung, Jong-Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.1
    • /
    • pp.14-17
    • /
    • 2011
  • Dwarfuess and Kunitz trypsin inhibitor (KTI) protein in soybean is useful traits for basic studies. df2 and ti gene control dwarfness and the expression of Kunitz trypsin inhibitor (KTI) protein in soybean, respectively. The objective of this research was to verify genetic linkage or independent inheritance of df2 and ti loci in soybean. The $F_2$ population was made by cross combination between "Gaechuck#2" (Df2Df2titi genotype, KTI protein absence and a normal growth type) and T210 (df2df2TiTi genotype, a dwarf growth type and KTI protein present). A total of 258 $F_2$ seeds were analyzed for the segregation of KTI protein using SDS-PAGE. And so, 198 $F_2$ plants were recorded for the segregation of dwarfness. The segregation ratio of 3 : 1 for Ti locus (201 Ti_ : 57 titi) and Df2 locus (143 Df2_ : 55 df2df2) was observed. Segregation ratio of 9 : 3 : 3 : 1 (116 Ti_Df2_: 44 Ti_df2df2: 27 titiDf2_: 11 titidf2df2) between df2 gene and ti gene was observed ($x^2$=3.53, P = 0.223). These results showed that df2 gene was inherited independently with the ti gene in soybean.

Physicochemical Characteristics and Antioxidant Activity of Kanjang made from Soybean Cultivars Lacking Lipoxygenase and Kunitz Trypsin Inhibitor Protein (Lipoxygenase와 Kunitz Trypsin Inhibitor 단백질 결핍콩으로 제조한 간장의 이화학적 특성 및 항산화 활성)

  • Hwang, Cho-Rong;Lee, Soo-Jung;Kang, Jae-Ran;Kwon, Min-Hye;Kwon, Hyo-Jin;Chung, Jong-Il;Sung, Nak-Ju
    • Journal of agriculture & life science
    • /
    • v.46 no.5
    • /
    • pp.111-125
    • /
    • 2012
  • In order to evaluate suitability by processing for non-GM soybean cultivars such as Gaechuck#2, Jinyangkong and CJ#1 lacking lipoxygenase (LOX) and kunitz trypsin inhibitor (KTI) protein, physicochemical characteristics and antioxidant activity of Kanjang made from above soybean were compared to Kanjang made from a conventional cultivar (Taekwangkong). Proximate compositions of soybeans were similar for the 4 kinds cultivars. Total phenol and flavonoid contents were significantly higher in cultivars lacking LOX and KTI protein than the Taekwangkong. In Kanjang, contents of total and reducing sugar were higher in Taekwangkong Kanjang than Kanjang from made cultivars lacking LOX and KTI protein. Contents of total and amino type nitrogen were the highest in the Jinyangkong Kanjang. Mineral contents were higher in the Jinyangkong and CJ#1 Kanjangs, amino acid contents were higher in the Kanjang made from 3 cultivars lacking LOX and KTI protein than the Taekwangkong. Taste of the Jinyangkong Kanjang with higher sweety and savory was also found to be superior to that of others in overall acceptability evaluation. Total phenol and flavonoid contents in Kanjang were significantly higher in the Kanjang made from cultivars lacking LOX and KTI protein than the Taekwangkong. Radical scavenging activity of Kanjang was increased in the total phenol contents dependent on. Reducing power by ferric-reducing antioxidant potential (FRAP) was significantly higher the Kanjang made from Gaechuck#2 and CJ#1 than the Taekwangkong. $Fe^{2+}$ chelating activity was higher in Taekwangkong Kanjang than the other cultivars, but its activity was similar to Jinyangkong Kanjang. Therefore, higher nutritional composition, total phenol and flavonoids contents and antioxidant activity in the Kanjang made from soybean cultivars lacking LOX and KTI protein might be provide better benefit for manufacture of another their products.

The Development of a New Soybean Strain Without Kunitz Trypsin Inhibitor, Lectin, and 7S α' Subunit Protein (쿠니츠트립인히비터, 렉틴 및 7S α' 서버유닛 3가지 단백질이 없는 콩 계통의 개발)

  • Chae, Won Gi;Choi, Sang Woo;Kang, Gyung Young;Chung, Jong Il
    • Journal of Life Science
    • /
    • v.30 no.7
    • /
    • pp.592-597
    • /
    • 2020
  • Soybean [Glycine max (L.) Merr.] seeds contain an average of 40% protein on a dry weight basis, but they also contain antinutritional elements such as lectin, Kunitz trypsin inhibitor (KTI), and 7S α'- subunit protein. The objective of this research was to develop a new soybean genotype with triple recessive alleles for these elements. Three parents (Gaechuck#2, PI506876, and Le-16) were used to develop the genetic population, and the presence of lectin and KTI protein was detected using Western blot while 7S α' subunit protein was detected using SDS-PAGE. One F3 plant strain with proper agronomical traits such as type, height, seed quality, and 100-seed weight was selected. The genotype of the developed strain is titilelecgy1cgy1, that is KTI, lectin, and 7S α' subunit protein free. The new strain has a purple flower, determinate growth habit, and light yellow pods at maturity. The seed has a buffer hilum and is yellow in color. The new strain's height was 58 cm compared to the Daewonkong cultivar at 46 cm, and its 100-seed weight was 27.1 g, smaller than the Daewonkong at 29.0 g. This is the first new soybean strain with the titilelecgy1cgy1 genotype, and it can be used to improve yellow soybean cultivars of high quality and function.

A Stack of Recessive Alleles of Kunitz Trypsin Inhibitor, Lectin, and Stachyose in Soybean (콩에서 쿠니츠트립인히비터, 렉틴 및 스타키오스에 대한 열성 유전자의 집적)

  • Choi, Sang Woo;Chae, Won Gi;Kang, Gyung Young;Chung, Jong Il
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.774-778
    • /
    • 2019
  • Soybean [Glycine max (L.) Merr.] is one of the major food sources of protein, oil, carbohydrates, isoflavones, and other nutrients for both humans and animals. However, soybean seeds contain antinutritional factors, such as lectin protein, Kunitz Trypsin Inhibitor (KTI) protein, and stachyose. The objective of this research was to stack recessive alleles for development a triple recessive genotype, titilelers2rs2, with low KTI protein, lectin protein, and stachyose contents. Three parents (Gaechuck#2, PI200508, and 14G20) were used to develop the breeding population. The presence or absence of the lectin and KTI proteins was detected by western blotting. The stachyose content in mature seeds was determined by HPLC. Agronomic traits, such as plant type, plant height, maturity date, lodging, seed quality, and 100-seed weight, were evaluated for the four $F_3$ plant strains. One $F_4$ plant strain with the desired agronomical traits was selected. One new strain with the triple recessive titilelers2rs2 genotype was developed. The plant height of the new strain was 51 cm and the 100-seed weight was 31.0 g. The new strain had a yellow seed coat and yellow hilum. The stachyose content of the new strain was 3.8 g/kg. One strain developed in this research will be used to produce improved yellow soybean cultivars that are free of lectin and KTI proteins and low in stachyose content.

Selection of rs2rs2titi Soybean Genotype with Yellow Seed Coat (rs2rs2titi 유전자형을 가진 노란 콩 계통 선발)

  • Choi, Sang Woo;Park, Jun Hyun;Chung, Jong Il
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1285-1289
    • /
    • 2018
  • Soybean [Glycine max (L.) Merr.] seed is an important dietary source of protein, oil, carbohydrates, isoflavones, and other nutrients for humans and animals. But, antinutritional factors in the raw mature soybean are exist. Kunitz trypsin inhibitor (KTI) protein and stachyose are main antinutritional factors in soybean seed. The genetic removal of the antinutritional factors will improve the nutritional value of soybean seed. The objective of this research was to breed a new yellow soybean strains (rs2rs2titi genotype) with the traits of lacking of KTI protein and low content of stachyose. Breeding population was developed from the cross of "Jinyangkong" and 15G1 parents. Presence or absence of KTI protein was detected based on Western Blot technique. Content of stachyose in mature seed was detected by HPLC. Total four new strains (603-1, 603-2, 625, and 694) with KTI protein free and low content of stachyose were selected. Four strains (603-1, 603-2, 625, and 694) have yellow seed coat and hilum. Plant height of 603-1 strain was 65 cm and 100-seed weight was 29.2 g. Plant height of 603-2 strain was 66 cm and 100-seed weight was 26.2 g. Plant height of 625 strain was 64 cm and 100-seed weight was 27.1 g. Content of stachyose for four new strains was 3.0~3.50 g/kg. Four strains selected in this research will be used to improve new yellow soybean cultivar with KTI protein free, and low content of stachyose.

A Fluorometric Assay for Trypsin Inhibitor (트립신 저해단백질의 형광측정법)

  • Jung, Jin;Lee, Chun-Young
    • Applied Biological Chemistry
    • /
    • v.25 no.3
    • /
    • pp.182-188
    • /
    • 1982
  • A fluorometric method is described which permits the assay of trypsin inhibitor contained in a sample in an extremely small amount, utilizing a novel reagent generally called fluorescamine. The fluorometric assay with an enzyme kinetic approach has been found to be at least 100 times more sensitive than the well-known Kunitz's spectrophotometric method, considerably taster and less complicated, when it was demonstrated with the anti tryptic activities of very dilute extracts from soybean, red-bean and mung bean. Details of experimental procedure as well as theoretical considerations will be discussed.

  • PDF

Ileal Digestibility of Amino Acids in Conventional and Low-Kunitz Soybean Products Fed to Weanling Pigs

  • Goebel, K.P.;Stein, H.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.88-95
    • /
    • 2011
  • An experiment was conducted to determine the standardized ileal digestibility (SID) of amino acids (AA) in four sources of full-fat soybeans (FFSB) and in one source of soybean meal (SBM). The FFSB had different concentrations of trypsin inhibitor units (TIU) and included two sources of conventional FFSB, and two sources of a soybean variety that was selected for a reduced concentration of the Kunitz trypsin inhibitor. The conventional FFSB was either low temperature-processed (LT-FFSB-CV; 37.7% CP, 35.4 TIU/mg) or high temperature-processed (HT-FFSB-CV; 40.5% CP, 4.4 TIU/mg). The low-Kunitz FFSB was also either low temperature-processed (LT-FFSB-LK; 36.2% CP, 23.5 TIU/mg) or high temperature-processed HT-FFSB-LK; (38.2% CP, 4.0 TIU/mg). The SBM contained 47.5% CP and 3.20 TIU/mg. Twelve weanling barrows (initial BW: $11.1{\pm}1.3\;kg$) were fitted with a T-cannula in the distal ileum. Pigs were allotted to a replicated $6{\times}6$ Latin square design with six diets and six periods per square. Five diets were prepared using each of the soybean sources as the only source of AA in the diet. An N-free diet was also included in the experiment to measure basal endogenous losses of AA. The two low temperature-processed FFSB had lower (p<0.05) AID and SID values for all indispensable AA than the two high temperature-processed FFSB and SBM. The SID values for all indispensible AA except Trp were greater (p<0.05) in LT-FFSB-LK than in LT-FFSB-CV, but the SID of AA in HT-FFSB-CV and HT-FFSB-LK were not different. The SID of AA in SBM were not different from the SID in HT-FFSB-CV and in HT-FFSB-LK. Results of this experiment show that a reduction of the TIU from 35.4 to 23.5 TIU/mg will improve the SID of AA, but this reduction is not sufficient to completely ameliorate the negative impact of trypsin inhibitors. Results also show that the SID of AA in high temperature-processed FFSB is similar to that in de-hulled SBM.

Effects of Heat Treatment on Soybeans With and Without the Gene Expression for the Kunitz Trypsin Inhibitor: Chick Growth Assays

  • Burnham, L.L.;Kim, I.H.;Hancock, J.D.;Lewis, A.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.12
    • /
    • pp.1750-1757
    • /
    • 2000
  • A total of 864 broiler chicks were used at Kansas State University and the University of Nebraska to determine the effects of heat treatment of two soybean genotypes on the growth performance. The soybeans were Williams 82 variety with (+K) and without (-K) gene expression for the Kunitz trypsin inhibitor. Heat treatment (autoclaving at $121^{\circ}C$ and $1.1kg/cm^2$) was applied for 0, 3, 6, 12, 18, and 24 min, resulting in a $2{\times}6$ factorial arrangement of treatments. Station and station treatment effects occurred, indicating that response in nutritional value of the soybean genotypes to heat treatment varied from year to year and location to location. However, the interactions were in magnitude of response rather than direction of response, with greater reductions in trypsin inhibitor concentrations for the soybeans heat processed at the Nebraska location. Pooled data indicated that -K supported greater (p<0.001) ADG, ADFI and gain/feed than the +K genotype. As the length of heat treatment increased, the ADG, ADFI, and the gain/feed ratio increased for chicks fed both soybean genotypes (p<0.0001). However, heating the -K soybeans resulted in a greater response in ADG, ADFI, and gain/feed than heating the +K soybeans (genotype heat treatment interaction, p<0.001). Pancreatic weights (mg pancreas/g of BW) of chicks fed -K soybeans were reduced compared to those from chicks fed +K (p<0.001). Increasing heat treatment decreased pancreas weights in chicks fed both soybean genotypes (p<0.001). Chicks fed heated soybeans in the Nebraska experiment had lower pancreatic weights than chicks fed heated soybeans in the Kansas experiment (station heat treatment interaction, p<0.0001). Chick growth performance was improved and pancreatic weights decreased by feeding raw -K soybeans versus raw +K soybeans, and by increasing heat treatment of both soybean genotypes. However, the response to heat treatment was not independent of genotype. Both +K and -K soybeans heated for 24 min supported similar ADG, ADFI, gain/feed, and pancreas weights, although chicks fed raw +K soybeans had lower growth performance than chicks fed -K soybeans. In conclusion, raw -K soybeans supported greater growth performance in broiler chicks than raw +K soybeans, although this advantage was lost when both soybean genotypes were heated for 24 min. Heat treatment of +K soybeans supported similar growth performance to heated -K soybeans, even though +K soybeans supported lower rates and efficiencies of gain than -K soybeans when fed raw.