• Title/Summary/Keyword: Kulback-Leibler 엔트로피

Search Result 1, Processing Time 0.014 seconds

Performance Improvement of Ensemble Speciated Neural Networks using Kullback-Leibler Entropy (Kullback-Leibler 엔트로피를 이용한 종분화 신경망 결합의 성능향상)

  • Kim, Kyung-Joong;Cho, Sung-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.4
    • /
    • pp.152-159
    • /
    • 2002
  • Fitness sharing that shares fitness if calculated distance between individuals is smaller than sharing radius is one of the representative speciation methods and can complement evolutionary algorithm which converges one solution. Recently, there are many researches on designing neural network architecture using evolutionary algorithm but most of them use only the fittest solution in the last generation. In this paper, we elaborate generating diverse neural networks using fitness sharing and combing them to compute outputs then, propose calculating distance between individuals using modified Kullback-Leibler entropy for improvement of fitness sharing performance. In the experiment of Australian credit card assessment, breast cancer, and diabetes in UCI database, proposed method performs better than not only simple average output or Pearson Correlation but also previous published methods.