• Title/Summary/Keyword: Kubelka-Munk

Search Result 32, Processing Time 0.02 seconds

An Image-based Color Appearance Analysis of Makeup and Image Synthesis based on Kubelka-Munk Model (Kubelka-Munk모델을 이용한 이미지 기반 메이크업 색상 분석 및 도포 영상 합성)

  • Kim, Myoung-Jun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.3
    • /
    • pp.349-358
    • /
    • 2015
  • Simulating color appearance of makeup effect is an important issue in computer graphics as well as cosmetic industry. Most of previous works on makeup simulation are simple color blending to mimic the cosmetic effects. Some of previous works employed Kubelka-Munk model to accurately simulate the layering effect of cosmetics. However, the simulation limited on single point, and the rest of area are still computed by simple color blending utilizing the color of the single point simulation. This paper presents an image-based method to compute the color appearance effect of makeup application using per-pixel Kubelka-Munk model. Unlike the previous methods, it is possible to compute per-pixel application thickness as well as optical property of cosmetics. The computed thickness pattern can be used in makeup simulation for a more realistic makeup simulation.

Quantitative Analysis by Diffuse Reflectance Infrared Fourier Transform and Linear Stepwise Multiple Regression Analysis I -Simultaneous quantitation of ethenzamide, isopropylantipyrine, caffeine, and allylisopropylacetylurea in tablet by DRIFT and linear stepwise multiple regression analysis-

  • Park, Man-Ki;Yoon, Hye-Ran;Kim, Kyoung-Ho;Cho, Jung-Hwan
    • Archives of Pharmacal Research
    • /
    • v.11 no.2
    • /
    • pp.99-113
    • /
    • 1988
  • Quantitation of ethenzamide, isopropylantipyrine and caffeine takes about 41 hrs by conventional GC method. Quantitation of allylisoprorylacetylurea takes about 40 hrs by conventional UV method. But quantitation of them takes about 6 hrs by DRIFT developing method. Each standard and sample sieved, powdered and acquired DRIFT spectrum. Out of them peak of each component was selected and ratio of each peak to standard peak was acquired, and then linear stepwise multiple regression was performed with these data and concentration. Reflectance value, Kubelka-Munk equation and Inverse-Kubelka-Munk equation were modified by us. Inverse-Kubelka-Munk equation completed the deficit of Kubelka-Munk equation. Correlation coefficients acquired by conventioanl GC and UV against DRIFT were more than 0.95.

  • PDF

Prediction of Color Reproduction using the Scattering and Absorption Coefficients derived from the Kubelka-Munk model in Package Printing (패키지 인쇄에 있어서 Kubelka-Munk Model 유래의 산란 및 흡수 계수를 이용한 색상 재현성 예측)

  • Hyun, Young-joo;Park, Jae-sang;Tae, Hyun-chul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.203-210
    • /
    • 2021
  • With the development of package printing technology, the package has expanded from the basic function of protecting products to the marketing function through package design. Color, the visual element that composes the package design, is delivered to the consumer most quickly and effectively. As color marketing of these package designs expands, accurate color reproduction that the product wants to express is becoming more important. The color of an object is transmitted by absorption and scattering of light. Spectral reflectance refers to the intensity of light reflected by an object at different wavelengths by the spectral effect. As a result, the color of the object is expressed in various colors. Packaged printing inks have their own absorption and scattering coefficients, and the Kubelka-Munk model for color reproduction and prediction defines the relationship between these correlation coefficients through reflectance. In the Kubelka-Munk model for color reproduction and prediction, the relationship between the absorption and scattering coefficients (K/S) of printed material is predicted as the sum of the K/S values according to the mixing ratio of all color ink used. In this study, the reflectance of the measured print is reversely calculated at the mixing ratio of print ink using the Kubelka-Munk model. Through this, the relationship value of the ink-specific absorption/scattering coefficient constituting the final printed material is predicted. Delta E is derived through the predicted reflectance, and the similarity between the measured value and the predicted value is confirmed.

A Study of Skin Reflectance Using Kubelka-Munk Model (Kubelka-Munk 모델을 이용한 피부 분광반사율 연구)

  • Cho, A Ra;Kim, Su Ji;Lee, Jun Bae;Sim, Geon Young;Back, Min;Cho, Eun Seul;Jang, Ji Hui;Jang, Eunseon;Kim, Youn Joon;Yoo, Kweon Jong;Han, Jeong Woo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.45-55
    • /
    • 2016
  • Light shows various optical behaviors such as reflection, absorption, and scattering on skin for individuals. In particular, reflection of light from the skin has been widely used as the brightness index of the skin of individuals through the measurement of the physical quantity of spectral reflectance. Therefore, the study of light behavior on skin would be useful for the preparation of new evaluation method in the development stage of make-up products. In this study, multi-dimensional analysis for spectral reflectance behavior of light on individual skin was performed using Kubelka-Munk model. Also, we analyzed the contribution of skin parameters such as skin thickness and hemoglobin, which could affect the spectral reflectance, using above model and literature information. Base on this, we calculated the theoretical reflectance of normal women for visual light, which showed good agreement with the measured reflectance. Our study of light propagation in skin based on Kubelka-Munk model provides useful insight for the development of personalized cosmetic in the near future.

Optimized Structural and Colorimetrical Modeling of Yarn-Dyed Woven Fabrics Based on the Kubelka-Munk Theory (Kubelka-Munk이론에 기반한 사염직물의 최적화된 구조-색채모델링)

  • Chae, Youngjoo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.3
    • /
    • pp.503-515
    • /
    • 2018
  • In this research, the three-dimensional structural and colorimetrical modeling of yarn-dyed woven fabrics was conducted based on the Kubelka-Munk theory (K-M theory) for their accurate color predictions. In the K-M theory for textile color formulation, the absorption and scattering coefficients, denoted K and S, respectively, of a colored fabric are represented using those of the individual colorants or color components used. One-hundred forty woven fabric samples were produced in a wide range of structures and colors using red, yellow, green, and blue yarns. Through the optimization of previous two-dimensional color prediction models by considering the key three-dimensional structural parameters of woven fabrics, three three-dimensional K/S-based color prediction models, that is, linear K/S, linear log K/S, and exponential K/S models, were developed. To evaluate the performance of the three-dimensional color prediction models, the color differences, ${\Delta}L^*$, ${\Delta}C^*$, ${\Delta}h^{\circ}$, and ${\Delta}E_{CMC(2:1)}$, between the predicted and the measured colors of the samples were calculated as error values and then compared with those of previous two-dimensional models. As a result, three-dimensional models have proved to be of substantially higher predictive accuracy than two-dimensional models in all lightness, chroma, and hue predictions with much lower ${\Delta}L^*$, ${\Delta}C^*$, ${\Delta}h^{\circ}$, and the resultant ${\Delta}E_{CMC(2:1)}$ values.

A study on the Transformation from CMYK to $L^{*}a^{*}b^{*}$ color space using color reproduction models (색재현 모델을 이용한 CMYK에서 $L^{*}a^{*}b^{*}$ 색변환에 관한 연구)

  • 차재영;조가람;구철희
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.2
    • /
    • pp.29-40
    • /
    • 2000
  • Recently. color proofing in printing industry grow rapidly. If an order decide color from known color information in the case of color reproduction, we can reduce expenses and time. In color proofing the best important point must be closed proofed color to primary color and secondary color. Model-based approaches have the advantages of faster recharacterization and the opportunity of simulating product enhancements such as changes in ink properties and halftoning. In this paper, we transformed the dot area of CMYK to CIELAB color space using color reproduction models. Firstly, we measured spectral reflectance of primary color printed by Matchprint II and the data was used to find tone reproduction curve using regression equation, and than we applied at primary color model, such as Murray-Davies, Yule-Nilsen, and mixed color model, such as Kubelka-Munk, relaxed version of spectral Neugebauer. In such results, the Kubelka-Munk model resulted in the best spectral reconstruction accuracy followed by relaxed version of spectral Neugebauer model, color difference is 2.8401.

  • PDF

A Novel Approach for Estimating the Relation between K/S Value and Dye Uptake in Reactive Dyeing of Cotton Fabrics

  • Becerir Behcet
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.224-228
    • /
    • 2005
  • This paper focuses on the application of a novel mathematical limit approach derived for K/S values in reactive dyeing of cotton fabrics. The relation obtained from Kubelka-Munk equation is used because the Kubelka-Munk equation is the basic relationship among fabric reflectance, fabric dye content and dyestuff characteristics. The limit approach derived in a former paper is applied to the laboratory dyeings and the dyeing behavior of some reactive dyes on cotton knitted fabric has been obtained. The results of the laboratory experiments are discussed using the new mathematical approach. When the actual K/S values obtained from the dyeings and the calculated K/S values derived by the limit approach are considered independently, it is observed that the limit relation is val id for low dye concentration applications. When the K/S values are calculated taking the K/S value of the initial dyeing concentration $(0.1\;\%\;owf)$ as the starting concentration by applying the result of the derived limit approach, the calculated K/S values fit with the ones obtained in actual dyeings. It is concluded that the novel approach presented in the paper can be used in calculating the K/S values when the initial dyeings at low dye concentrations are carefully carried out.

Real-Time 3D Oriental Color-Ink Painting (Kubelka-Munk모델을 응용한 실시간 3차원 수묵담채화 렌더링)

  • Oh, Crystal S.;Nam, Yang-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • 본 논문에서는 3D 게임이나 가상현실, 인터렉티브 아트 등의 실시간 환경의 컨텐츠 제작에 활용가능한 수묵담채화풍의 렌더링 기법을 제안한다. 제안된 기법은 기존의 3차원 수묵화 렌더링 연구에서는 다루지 않았던, 색채표현법과 그 합성법을 중심으로 연구되었다. 색채표현법의 경우, 일반적으로 삼색을 단계적으로 겹쳐서 표현하는 수묵담채화의 특성에 따라, 실제 그림을 그릴 때에 적용되는 삼색의 혼합방법과 순서가 자동으로 적용될 수 있는 삼색기반 구조를 통해 농담과 질감효과를 표현했으며, 또한 이러한 삼색레이어의 합성을 위해서는 안료의 광학적 성질을 반영하여 실제 회화매체에 가까운 색상을 재현할 수 있는 Kubelka-Munk(KM)모델을 적용한다. 기존의 KM모델은 비사실적 렌더링 연구 분야에서 수채화, 유화 등 서양화를 대상으로 한 색채 합성에 적용되어 왔기 때문에 기존의 연구에서 제시한 방법만으로는 삼색레이어가 겹쳐질 때 나타나는 수묵담채화의 특징과 천연 재료를 사용하는 동양 안료의 색상을 정확히 반영할 수 없었다. 따라서 본 논문에서는 실제 수묵담채화에 이용되는 전통안료의 색상 분석을 통해 KM모델에 적용할 파라미터들을 추출하고, 앞에서 설계한 삼색 기반 구조에 따라 색상을 합성하는 방법을 제시한다.

  • PDF

APPLICATION OF BENFOR'S EQUATIONS TO THE PROBLEM OF "SEEING THROUGH LAYERS"

  • Krivoshiev, Georgi -P.;Chalucova, Raina-P.;Dahm, Donald-J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1132-1132
    • /
    • 2001
  • This work is a further development of the method created by G. Krivoshiev in 1996 for elimination of peel interference and prediction of fruit flesh optical density. In this investigation, as it was earlier, the objects are observed as being structured by three successive layer “AlongrightarrowOlongrightarrowB” denoting “peel-flesh-peel”. In the first version of the method the transmittances of the surface layers A and B were measured according to Kubelka-Munk theory by means of their diffuse reflectance. At that the overall transmittance T was approximated in the form of a multiplication approximation being valid for plane-parallel layers of a non-scattering material. In this work this approximation was done away with applying the theory of discontinuum, respectively Benfor's equations. As a result two mathematical models were created for non-destructive prediction of fruit flesh optical density. These models are different from the ones based solely on Kubelka-Munk theory, the destruction being marked by the terms 1n (1 - $R_{A}R_{0}$) and 1n (1 - $R_{A}R_{B}$), where: $R_{A}$ and $R_{B}$ are reflectance values for the surface layers A and B; $R_{0}$ is the average reflectance of the internal layer that could be obtained empirically by means of a preliminary measurement of sufficiently large number of physically peeled fruits of a given species and variety.

  • PDF

A study on the transfromation from CMYK to Labcolor space using color reproduction models (색재현 모델을 이용한 CMYK to Lab 색변환에 관한 연구)

  • 차재영;구철회
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2000.04a
    • /
    • pp.25-34
    • /
    • 2000
  • Recently, color proofing in printing industry grow rapidly. If an order decide color from known color information in the case of color reproduction, we can reduce expenses and time. In color proofing the best important point must be closed proofed color to primary color and secondary color. Model-based approaches have the advantages of faster recharacterization and the opportunity of simulating product enhancements such as changes in ink properties and halftoning. In this paper, we transformed the dot area of CMYK to CIELAB color space using color reprodution models. Firstly, we measured spectral reflectance of primary color printed by Matchprint II and the data was used to find tone reproduction curve using regression equation, and than we applied at primary color model, such as Murray-Davies, Yule-Nilsen, and mixed color model, such as Kubelka--Munk, relaxed version of spectral Neugebauser. In such results, the Kubleka-Munk model resulted in the best spectral reconstruction accuracy followed by relaxed version of spectral Neugebauer model, color difference is 2.8401.