The Journal of the Institute of Internet, Broadcasting and Communication
/
v.13
no.2
/
pp.103-114
/
2013
This paper suggests a method to reduce the number of performances of Kruskal and Reverse-delete algorithms. Present Kruskal and Reverse-delete algorithms verify whether the cycle occurs within the edges of the graph. For this reason, they have problems of unnecessarily performing extra algorithms from the edges, even though they've already obtained the minimum spanning tree. This paper, first of all, suggests the 1st method which reduces the no. of performances by introducing stop point criteria of algorithm, but at the same time, performs algorithms from all the edges, just like how Kruskal and Reverse-delete algorithms. Next, it suggests the 2nd method which finds the minimum spanning tree from the remaining edges after getting rid of all the unnecessary edges which are considered not to affect the minimum spanning tree. These suggested methods have an effect of terminating algorithm at least 1.4 times and at most 3.86times than Kruskal and Reverse-delete algorithms, when applied to the real graphs. We have found that the 2nd method of the Reverse-delete algorithm has the fastest speed in terminating an algorithm, among 4 algorithms which are results of the 2 suggested methods being applied to 2 algorithms.
In this paper, to obtain the Minimum Spanning Tree (MST) from the graph with several nodes having the same weight, I applied both Bor$\dot{u}$vka and Kruskal MST algorithms. The result came out to such a way that Kruskal MST algorithm succeeded to obtain MST, but not did the Prim MST algorithm. It is also found that an algorithm that chooses Inter-MSF MWE in the $2^{nd}$ stage of Bor$\dot{u}$vka is quite complicating. The $1^{st}$ stage of Bor$\dot{u}$vka has an advantage of obtaining Minimum Spanning Forest (MSF) with the least number of the edges, and on the other hand, Kruskal MST algorithm has an advantage of always obtaining MST though it deals with all the edges. Therefore, this paper suggests an Hybrid MST algorithm which consists of the merits of both Bor$\dot{u}$vka's $1^{st}$ stage and Kruskal MST algorithm. When applied additionally to 6 graphs, Hybrid MST algorithm has a same effect as that of Kruskal MST algorithm. Also, comparing the algorithm performance speed and capacity, Hybrid MST algorithm has shown the greatest performance Therefore, the suggested algorithm can be used as the generalized MST algorithm.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.14
no.4
/
pp.233-241
/
2014
This paper suggests a fast minimum spanning tree algorithm which simplify the original graph to 2-edge connected graph, and using the cycling property. Borůvka algorithm firstly gets the partial spanning tree using cycle property for one-edge connected graph that selects the only one minimum weighted edge (e) per vertex (v). Additionally, that selects minimum weighted edge between partial spanning trees using cut property. Kruskal algorithm uses cut property for ascending ordered of all edges. Reverse-delete algorithm uses cycle property for descending ordered of all edges. Borůvka and Kruskal algorithms always perform |e| times for all edges. The proposed algorithm obtains 2-edge connected graph that selects 2 minimum weighted edges for each vertex firstly. Secondly, we use cycle property for 2-edges connected graph, and stop the algorithm until |e|=|v|-1 For actual 10 benchmark data, The proposed algorithm can be get the minimum spanning trees. Also, this algorithm reduces 60% of the trial number than Borůvka, Kruskal and Reverse-delete algorithms.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.12
no.6
/
pp.165-173
/
2012
Given a connected, weighted, and undirected graph, the Minimum Spanning Tree (MST) should have minimum sum of weights, connected all vertices, and without any cycle taking place. Borůvka Algorithm is firstly suggested as an algorithm to evaluate the MST, but it is not widely used rather than Prim and Kruskal algorithms. Borůvka algorithm selects the Minimum Weight Edge (MWE) from each vertex with distinct weights in $1^{st}$ stage, and selects the MWE from each MSF (Minimum Spanning Forest) in $2^{nd}$ stage. But the cycle check and the number of MSF in $1^{st}$ stage and $2^{nd}$ stage are difficult to implication by computer program even if it is easy to verify visually. This paper suggests the generalized Borůvka Algorithm, This algorithm selects all of the same MWEs for each vertex, then checks the cycle and constructs MSF for ascending sorted MWEs. Kruskal method bring into this process. if the number of MSF greats then 1, this algorithm selects MWE from ascending sorted inter-MSF edges. The generalized Borůvka algorithm is verified its application by being applied to the 7 graphs with the many minimum weights or distinct weight edges for any vertex. As a result, the generalized Borůvka algorithm is less required for cycle verification then the Kruskal algorithm. Therefore, the generalized Borůvka algorithm is more fast to obtain MST then Kruskal algorithm.
The Transactions of the Korean Institute of Electrical Engineers A
/
v.49
no.3
/
pp.118-123
/
2000
This paper presents an efficient algorithm for loss reduction and load balancing by sectionalizing switch operation in large scale distribution system of radial type. We use Genetic algorithm and Kruskal algorithm to solve distribution system reconfiguration. Genetic algorithm is used to minimize objective function including loss and load balancing items. Kruskal algorithm is used to satisfy the radial condition of distribution system. The experimental results show that the proposed method has the ability to search a good solution regardless of initial configuration and size of system.
Park Mee-Jeong;Heo Hyun;Kim Tae-Gon;Suh Kyo;Lee Jeong-Jae
Journal of The Korean Society of Agricultural Engineers
/
v.48
no.4
/
pp.3-12
/
2006
Watershed is the land area that contributes runoff to an outlet point. To delineate an watershed, watershed delineation using GIS that contains grid data structure is the most general method. Some researchers have studied to implement algorithms that revise the TIN topography since it is difficult to delineate watershed boundary more accurately. In this study kruskal's greedy algorithm and triangulated irregular network (TIN) were used to delineate a watershed. This method does not require a conversion from to DEM in grid and automatically obtain(generates) the oulet points. Delineation algorithm was tested in Geosan-gun, Chung-cheongbuk-do and get small watershed areas. Finally, kruskal's algorithm could operate more precisely with revision algorithm.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.14
no.1
/
pp.51-59
/
2014
This paper suggests a method of lessening number of a graph's edges population in order to rapidly obtain the minimum spanning tree. The present minimum spanning tree algorithm works on all the edges of the graph. However, the suggested algorithm reduces the edges population size by means of applying a method of deleting maximum weight edges in advance from vertices with more than 2 valencies. Next, it applies a stopping criterion which ideally terminates Borůvka, Prim, Kruskal and Reverse-Delete algorithms for reduced edges population. On applying the suggested algorithm to 9 graphs, it was able to minimize averagely 83% of the edges that do not become MST. In addition, comparing to the original graph, edges are turned out to be lessened 38% by Borůvka, 37% by Prim, 39% by Kruskal and 73% by Reverse-Delete algorithm, and thereby the minimum spanning tree is obtained promptly.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.13
no.4
/
pp.107-116
/
2013
This algorithm suggests a method in which a minimum spanning tree can be obtained fast by reducing the number of an algorithm execution. The suggested algorithm performs a select-and-delete process. In the select process, firstly, it performs Borůvka's first stage for all the vertices of a graph. Then it re-performs Borůvka's first stage for specific vertices and reduces the population of the edges. In the delete process, it deletes the maximum weight edge if any cycle occurs between the 3 edges of the edges with the reduced population. After, among the remaining edges, applying the valency concept, it gets rid of maximum weight edges. Finally, it eliminates the maximum weight edges if a cycle happens among the vertices with a big valency. The select-and-delete algorithm was applied to 9 various graphs and was evaluated its applicability. The suggested select process is believed to be the vest way to choose the edges, since it showed that it chose less number of big edges from 6 graphs, and only from 3 graphs, comparing to the number of edges that is to be performed when using MST algorithm. When applied the delete process to Kruskal algorithm, the number of performances by Kruskal was less in 6 graphs, but 1 more in each 3 graph. Also, when using the suggested delete process, 1 graph performed only the 1st stage, 5 graphs till 2nd stage, and the remaining till 3rd stage. Finally, the select-and-delete algorithm showed its least number of performances among the MST algorithms.
Journal of the Korea Society of Computer and Information
/
v.20
no.5
/
pp.31-39
/
2015
The degree-constrained minimum spanning tree (d-MST) problem is considered NP-complete for no exact solution-yielding polynomial algorithm has been proposed to. One thus has to resort to an heuristic approximate algorithm to obtain an optimal solution to this problem. This paper therefore presents a polynomial time algorithm which obtains an intial solution to the d-MST with the help of Kruskal's algorithm and performs k-opt on the initial solution obtained so as to derive the final optimal solution. When tested on 4 graphs, the algorithm has successfully obtained the optimal solutions.
Journal of the Korea Society of Computer and Information
/
v.19
no.7
/
pp.131-140
/
2014
In this paper, we present an efficient implementation of Kruskal's algorithm to obtain a minimum spanning tree. The proposed method utilizes the union-find data structure, reducing the depth of the tree of the node set by making the nodes in the path to root be the child node of the root of combined tree. This method can reduce the depth of the tree by shortening the path to the root and lowering the level of the node. This is an efficient method because if the tree's depth reduces, it could shorten the time of finding the root of the tree to which the node belongs. The performance of the proposed method is evaluated through the graphs generated randomly. The results showed that the proposed method outperformed the conventional method in terms of the depth of the tree.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.