• 제목/요약/키워드: Korean word-spacing

검색결과 53건 처리시간 0.02초

띄어쓰기 및 철자 오류 동시교정을 위한 통계적 모델 (A Joint Statistical Model for Word Spacing and Spelling Error Correction Simultaneously)

  • 노형종;차정원;이근배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권2호
    • /
    • pp.131-139
    • /
    • 2007
  • 본 논문에서는 띄어쓰기 오류와 철자 오류를 동시에 교정 가능한 전처리기를 제안한다. 제시된 알고리즘은 기존의 전처리기 알고리즘이 각 오류를 따로 해결하는 데에서 오는 한계를 극복하고, 기존의 noisy-channel model을 확장하여 대화체의 띄어쓰기 오류와 철자 오류를 동시에 효과적으로 교정할 수 있다. N-gram과 자소변환확률 등의 통계적 방법과 어절변환패턴 사전을 이용하여 최대한 사전을 적게 이용하면서도 효과적으로 교정 후보들을 생성할 수 있다. 실험을 통해 현재 단계에서는 만족할 만한 성능을 얻지는 못하였지만 오류 분석을 통하여 이와 같은 방법론이 실제로 효용성이 있음을 알 수 있었고 앞으로 더 많은 개선을 통해 일상적인 대화체 문장에 대해서 효과적인 전처리기로서 기능할 수 있을 것으로 기대된다.

중국인 한국어 학습자의 글쓰기에 나타난 띄어쓰기 오류 양상 및 지도 방향 (An Analysis of Korean Word Spacing Errors Made by Chinese Learners)

  • 왕원
    • 한국교육논총
    • /
    • 제40권1호
    • /
    • pp.59-79
    • /
    • 2019
  • 본 연구의 목적은 중국인 한국어 학습자들의 글쓰기 자료에 나타난 띄어쓰기 오류를 분석하고, 설문조사와 인터뷰 내용을 통해 오류 원인을 분석하여 중국인 학습자를 위한 띄어쓰기 교육 지도 방향을 제시하는 데 있다. 이를 위해 중국인 유학생의 글쓰기 자료 30편을 분석하였으며, 설문조사와 아울러 인터뷰를 실시하였다. 학습자들의 글쓰기 자료를 분석한 결과 총 148회 띄어쓰기 오류가 발견되었으며, 띄어 써야 하는데 붙여 쓴 오류(77.6%)는 붙여 써야 하는데 띄어 쓴 오류(22.4%)보다 훨씬 더 많이 나타났다. 붙여 쓴 오류 중 '명사+명사', '관형사(형)+의존명사'와 띄어 쓴 오류 중 '조사'의 오류 빈도수가 높게 나타났다. 이에 본고는 명사와 조사를 대상으로 연역적 측면과 귀납적 측면을 출발하여 띄어쓰기 지도 방향을 제시했다.

  • PDF

메모리 제약적 기기를 위한 음절 패턴 기반 띄어쓰기 시스템 (A Word Spacing System based on Syllable Patterns for Memory-constrained Devices)

  • 김신일;양선;고영중
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권8호
    • /
    • pp.653-658
    • /
    • 2010
  • 본 논문에서는 메모리 제약적인 기기에 적합한 한국어 띄어쓰기 시스템을 제안한다. 본 연구에서는 최신 선행 연구들에 비해 성능의 저하가 없게 하면서 동시에 메모리 사용량을 탁월하게 줄이는 데에 초점을 맞추었다. 규칙 정보는 전혀 사용하지 않고, 은닉 마르코프 모델(Hidden Markov Model)의 이론에 근거하여 확률 정보를 적용하였으며, 두 가지의 자질을 사용하는데, 1) 첫 번째 자질은 각 음절이 개별적으로 가지는 띄어쓰기 패턴 자질이며, 2) 두 번째 자질은 두 음절 패턴 자질 사이의 전이 확률 값 정보이다. 실험 결과에서, 첫 번째 자질만 사용한 경우 모바일에 적용하기 위해 제안된 다른 연구보다 약 53% 정도 적게 메모리를 사용하면서 약 91% 정도의 정밀도를 보였다. 두 가지 자질을 모두 사용한 경우 음절바이그램을 사용한 다른 연구와 비교하여 약 76% 정도 메모리를 적게 사용하면서 약 94%가 넘는 우수한 성능을 나타내었다.

LSTM 기반의 sequence-to-sequence 모델을 이용한 한글 자동 띄어쓰기 (LSTM based sequence-to-sequence Model for Korean Automatic Word-spacing)

  • 이태석;강승식
    • 스마트미디어저널
    • /
    • 제7권4호
    • /
    • pp.17-23
    • /
    • 2018
  • 자동 띄어쓰기 특성을 효과적으로 처리할 수 있는 LSTM(Long Short-Term Memory Neural Networks) 기반의 RNN 모델을 제시하고 적용한 결과를 분석하였다. 문장이 길거나 일부 노이즈가 포함된 경우에 신경망 학습이 쉽지 않은 문제를 해결하기 위하여 입력 데이터 형식과 디코딩 데이터 형식을 정의하고, 신경망 학습에서 드롭아웃, 양방향 다층 LSTM 셀, 계층 정규화 기법, 주목 기법(attention mechanism)을 적용하여 성능을 향상시키는 방법을 제안하였다. 학습 데이터로는 세종 말뭉치 자료를 사용하였으며, 학습 데이터가 부분적으로 불완전한 띄어쓰기가 포함되어 있었음에도 불구하고, 대량의 학습 데이터를 통해 한글 띄어쓰기에 대한 패턴이 의미 있게 학습되었다. 이것은 신경망에서 드롭아웃 기법을 통해 학습 모델의 오버피팅이 되지 않도록 함으로써 노이즈에 강한 모델을 만들었기 때문이다. 실험결과로 LSTM sequence-to-sequence 모델이 재현율과 정확도를 함께 고려한 평가 점수인 F1 값이 0.94로 규칙 기반 방식과 딥러닝 GRU-CRF보다 더 높은 성능을 보였다.

유전자 알고리즘을 이용한 고정 셀에서 글자 폰트(font) 최적화 (Word Processor font optimization in Fixed-function cell Using a Genetic Algorithm)

  • 김상원;김승희;김우제
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권10호
    • /
    • pp.163-172
    • /
    • 2013
  • 본 연구는 유전자알고리즘을 사용하여 표의 크기에 맞게 가장 최적화된 글자로 표현할 수 있는 방법을 실험하였다. 그 결과 셀의 넓이와 높이, 입력받을 글자의 개수를 계산하여 글자 크기, 줄 간격, 자간 간격의 최적의 값을 찾아 길이가 서로 다른 글자를 최적화된 상태로 표현할 수 있도록 폰트를 제공할 수 있었다. 본 연구는 유전자 알고리즘을 통하여 현재 사용하고 있는 다양한 워드프로세스에서 발생되고 있는 셀 고정 상태에서의 글자 최적화 문제에 대한 해결 방법을 제시하였다는데 그 의의가 있다.

KR-WordRank : WordRank를 개선한 비지도학습 기반 한국어 단어 추출 방법 (KR-WordRank : An Unsupervised Korean Word Extraction Method Based on WordRank)

  • 김현중;조성준;강필성
    • 대한산업공학회지
    • /
    • 제40권1호
    • /
    • pp.18-33
    • /
    • 2014
  • A Word is the smallest unit for text analysis, and the premise behind most text-mining algorithms is that the words in given documents can be perfectly recognized. However, the newly coined words, spelling and spacing errors, and domain adaptation problems make it difficult to recognize words correctly. To make matters worse, obtaining a sufficient amount of training data that can be used in any situation is not only unrealistic but also inefficient. Therefore, an automatical word extraction method which does not require a training process is desperately needed. WordRank, the most widely used unsupervised word extraction algorithm for Chinese and Japanese, shows a poor word extraction performance in Korean due to different language structures. In this paper, we first discuss why WordRank has a poor performance in Korean, and propose a customized WordRank algorithm for Korean, named KR-WordRank, by considering its linguistic characteristics and by improving the robustness to noise in text documents. Experiment results show that the performance of KR-WordRank is significantly better than that of the original WordRank in Korean. In addition, it is found that not only can our proposed algorithm extract proper words but also identify candidate keywords for an effective document summarization.

Hot Keyword Extraction of Sci-tech Periodicals Based on the Improved BERT Model

  • Liu, Bing;Lv, Zhijun;Zhu, Nan;Chang, Dongyu;Lu, Mengxin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.1800-1817
    • /
    • 2022
  • With the development of the economy and the improvement of living standards, the hot issues in the subject area have become the main research direction, and the mining of the hot issues in the subject currently has problems such as a large amount of data and a complex algorithm structure. Therefore, in response to this problem, this study proposes a method for extracting hot keywords in scientific journals based on the improved BERT model.It can also provide reference for researchers,and the research method improves the overall similarity measure of the ensemble,introducing compound keyword word density, combining word segmentation, word sense set distance, and density clustering to construct an improved BERT framework, establish a composite keyword heat analysis model based on I-BERT framework.Taking the 14420 articles published in 21 kinds of social science management periodicals collected by CNKI(China National Knowledge Infrastructure) in 2017-2019 as the experimental data, the superiority of the proposed method is verified by the data of word spacing, class spacing, extraction accuracy and recall of hot keywords. In the experimental process of this research, it can be found that the method proposed in this paper has a higher accuracy than other methods in extracting hot keywords, which can ensure the timeliness and accuracy of scientific journals in capturing hot topics in the discipline, and finally pass Use information technology to master popular key words.

스팸 문자 필터링을 위한 변형된 한글 SMS 문장의 정규화 기법 (A Normalization Method of Distorted Korean SMS Sentences for Spam Message Filtering)

  • 강승식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권7호
    • /
    • pp.271-276
    • /
    • 2014
  • 휴대폰에서 문자 메시지 전송 기능은 현대인들에게 매우 편리한 새로운 형태의 의사소통 방식이다. 반면에 문자 메시지 기능을 악용한 광고성 문자들이 너무 많이 쏟아져서 휴대폰 사용자들은 스팸 문자 공해에 시달리는 심각한 부작용을 낳게 되었다. 광고성 문자를 발송하는 사람들은 문자 메시지가 자동으로 차단되는 것을 회피하기 위해 한글 문장을 다양한 형태로 변형하거나 왜곡시키고 있으며, 이러한 문자 메시지를 자동으로 차단하기 위해서는 변형되거나 왜곡된 문장들을 정상적인 한글 문장으로 정규화하는 기술이 필수적이다. 본 논문에서는 변형되거나 왜곡된 광고성 문자 메시지를 정상적인 문장으로 정규화하고 정규화된 문장으로부터 자동 띄어쓰기 및 복합명사 분해 과정을 거쳐 키워드를 추출하기 위한 방법을 제안하였다.

워드 임베딩과 딥러닝 기법을 이용한 SMS 문자 메시지 필터링 (SMS Text Messages Filtering using Word Embedding and Deep Learning Techniques)

  • 이현영;강승식
    • 스마트미디어저널
    • /
    • 제7권4호
    • /
    • pp.24-29
    • /
    • 2018
  • 딥러닝에서 자연어 처리를 위한 텍스트 분석 기법은 워드 임베딩을 통해 단어를 벡터 형태로 표현한다. 본 논문에서는 워드 임베딩 기법과 딥러닝 기법을 이용하여 SMS 문자 메시지를 문서 벡터로 구성하고 이를 스팸 문자 메시지와 정상적인 문자 메시지로 분류하는 방법을 제안하였다. 유사한 문맥을 가진 단어들은 벡터 공간에서 인접한 벡터 공간에 표현되도록 하기 위해 전처리 과정으로 자동 띄어쓰기를 적용하고 스팸 문자 메시지로 차단되는 것을 피하기 위한 목적으로 음절의 자모를 특수기호로 왜곡하여 맞춤법이 파괴된 상태로 단어 벡터와 문장 벡터를 생성하였다. 또한 문장 벡터 생성 시 CBOW와 skip gram이라는 두 가지 워드 임베딩 알고리즘을 적용하여 문장 벡터를 표현하였으며, 딥러닝을 이용한 스팸 문자 메시지 필터링의 성능 평가를 위해 SVM Light와 정확도를 비교 측정하였다.

한국어 교재의 행 바꾸기 -띄어쓰기와 읽기 능력의 계발 - (Examining Line-breaks in Korean Language Textbooks: the Promotion of Word Spacing and Reading Skills)

  • 조인정;김단비
    • 한국어교육
    • /
    • 제23권1호
    • /
    • pp.77-100
    • /
    • 2012
  • This study investigates issues in relation to text segmenting, in particular, line breaks in Korean language textbooks. Research on L1 and L2 reading has shown that readers process texts by chunking (grouping words into phrases or meaningful syntactic units) and, therefore, phrase-cued texts are helpful for readers whose syntactic knowledge has not yet been fully developed. In other words, it would be important for language textbooks to avoid awkward syntactic divisions at the end of a line, in particular, those textbooks for beginners and intermediate level learners. According to our analysis of a number of major Korean language textbooks for beginner-level learners, however, many textbooks were found to display line-breaks of awkward syntactic division. Moreover, some textbooks displayed frequent instances where a single word (or eojeol in the case of Korean) is split between different lines. This can hamper not only learners' learning of the rules of spaces between eojeols in Korean, but also learners' development in automatic word recognition, which is an essential part of reading processes. Based on the findings of our textbook analysis and of existing research on reading, this study suggests ways to overcome awkward line-breaks in Korean language textbooks.