본 논문에서는 띄어쓰기 오류와 철자 오류를 동시에 교정 가능한 전처리기를 제안한다. 제시된 알고리즘은 기존의 전처리기 알고리즘이 각 오류를 따로 해결하는 데에서 오는 한계를 극복하고, 기존의 noisy-channel model을 확장하여 대화체의 띄어쓰기 오류와 철자 오류를 동시에 효과적으로 교정할 수 있다. N-gram과 자소변환확률 등의 통계적 방법과 어절변환패턴 사전을 이용하여 최대한 사전을 적게 이용하면서도 효과적으로 교정 후보들을 생성할 수 있다. 실험을 통해 현재 단계에서는 만족할 만한 성능을 얻지는 못하였지만 오류 분석을 통하여 이와 같은 방법론이 실제로 효용성이 있음을 알 수 있었고 앞으로 더 많은 개선을 통해 일상적인 대화체 문장에 대해서 효과적인 전처리기로서 기능할 수 있을 것으로 기대된다.
본 연구의 목적은 중국인 한국어 학습자들의 글쓰기 자료에 나타난 띄어쓰기 오류를 분석하고, 설문조사와 인터뷰 내용을 통해 오류 원인을 분석하여 중국인 학습자를 위한 띄어쓰기 교육 지도 방향을 제시하는 데 있다. 이를 위해 중국인 유학생의 글쓰기 자료 30편을 분석하였으며, 설문조사와 아울러 인터뷰를 실시하였다. 학습자들의 글쓰기 자료를 분석한 결과 총 148회 띄어쓰기 오류가 발견되었으며, 띄어 써야 하는데 붙여 쓴 오류(77.6%)는 붙여 써야 하는데 띄어 쓴 오류(22.4%)보다 훨씬 더 많이 나타났다. 붙여 쓴 오류 중 '명사+명사', '관형사(형)+의존명사'와 띄어 쓴 오류 중 '조사'의 오류 빈도수가 높게 나타났다. 이에 본고는 명사와 조사를 대상으로 연역적 측면과 귀납적 측면을 출발하여 띄어쓰기 지도 방향을 제시했다.
본 논문에서는 메모리 제약적인 기기에 적합한 한국어 띄어쓰기 시스템을 제안한다. 본 연구에서는 최신 선행 연구들에 비해 성능의 저하가 없게 하면서 동시에 메모리 사용량을 탁월하게 줄이는 데에 초점을 맞추었다. 규칙 정보는 전혀 사용하지 않고, 은닉 마르코프 모델(Hidden Markov Model)의 이론에 근거하여 확률 정보를 적용하였으며, 두 가지의 자질을 사용하는데, 1) 첫 번째 자질은 각 음절이 개별적으로 가지는 띄어쓰기 패턴 자질이며, 2) 두 번째 자질은 두 음절 패턴 자질 사이의 전이 확률 값 정보이다. 실험 결과에서, 첫 번째 자질만 사용한 경우 모바일에 적용하기 위해 제안된 다른 연구보다 약 53% 정도 적게 메모리를 사용하면서 약 91% 정도의 정밀도를 보였다. 두 가지 자질을 모두 사용한 경우 음절바이그램을 사용한 다른 연구와 비교하여 약 76% 정도 메모리를 적게 사용하면서 약 94%가 넘는 우수한 성능을 나타내었다.
자동 띄어쓰기 특성을 효과적으로 처리할 수 있는 LSTM(Long Short-Term Memory Neural Networks) 기반의 RNN 모델을 제시하고 적용한 결과를 분석하였다. 문장이 길거나 일부 노이즈가 포함된 경우에 신경망 학습이 쉽지 않은 문제를 해결하기 위하여 입력 데이터 형식과 디코딩 데이터 형식을 정의하고, 신경망 학습에서 드롭아웃, 양방향 다층 LSTM 셀, 계층 정규화 기법, 주목 기법(attention mechanism)을 적용하여 성능을 향상시키는 방법을 제안하였다. 학습 데이터로는 세종 말뭉치 자료를 사용하였으며, 학습 데이터가 부분적으로 불완전한 띄어쓰기가 포함되어 있었음에도 불구하고, 대량의 학습 데이터를 통해 한글 띄어쓰기에 대한 패턴이 의미 있게 학습되었다. 이것은 신경망에서 드롭아웃 기법을 통해 학습 모델의 오버피팅이 되지 않도록 함으로써 노이즈에 강한 모델을 만들었기 때문이다. 실험결과로 LSTM sequence-to-sequence 모델이 재현율과 정확도를 함께 고려한 평가 점수인 F1 값이 0.94로 규칙 기반 방식과 딥러닝 GRU-CRF보다 더 높은 성능을 보였다.
본 연구는 유전자알고리즘을 사용하여 표의 크기에 맞게 가장 최적화된 글자로 표현할 수 있는 방법을 실험하였다. 그 결과 셀의 넓이와 높이, 입력받을 글자의 개수를 계산하여 글자 크기, 줄 간격, 자간 간격의 최적의 값을 찾아 길이가 서로 다른 글자를 최적화된 상태로 표현할 수 있도록 폰트를 제공할 수 있었다. 본 연구는 유전자 알고리즘을 통하여 현재 사용하고 있는 다양한 워드프로세스에서 발생되고 있는 셀 고정 상태에서의 글자 최적화 문제에 대한 해결 방법을 제시하였다는데 그 의의가 있다.
A Word is the smallest unit for text analysis, and the premise behind most text-mining algorithms is that the words in given documents can be perfectly recognized. However, the newly coined words, spelling and spacing errors, and domain adaptation problems make it difficult to recognize words correctly. To make matters worse, obtaining a sufficient amount of training data that can be used in any situation is not only unrealistic but also inefficient. Therefore, an automatical word extraction method which does not require a training process is desperately needed. WordRank, the most widely used unsupervised word extraction algorithm for Chinese and Japanese, shows a poor word extraction performance in Korean due to different language structures. In this paper, we first discuss why WordRank has a poor performance in Korean, and propose a customized WordRank algorithm for Korean, named KR-WordRank, by considering its linguistic characteristics and by improving the robustness to noise in text documents. Experiment results show that the performance of KR-WordRank is significantly better than that of the original WordRank in Korean. In addition, it is found that not only can our proposed algorithm extract proper words but also identify candidate keywords for an effective document summarization.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권6호
/
pp.1800-1817
/
2022
With the development of the economy and the improvement of living standards, the hot issues in the subject area have become the main research direction, and the mining of the hot issues in the subject currently has problems such as a large amount of data and a complex algorithm structure. Therefore, in response to this problem, this study proposes a method for extracting hot keywords in scientific journals based on the improved BERT model.It can also provide reference for researchers,and the research method improves the overall similarity measure of the ensemble,introducing compound keyword word density, combining word segmentation, word sense set distance, and density clustering to construct an improved BERT framework, establish a composite keyword heat analysis model based on I-BERT framework.Taking the 14420 articles published in 21 kinds of social science management periodicals collected by CNKI(China National Knowledge Infrastructure) in 2017-2019 as the experimental data, the superiority of the proposed method is verified by the data of word spacing, class spacing, extraction accuracy and recall of hot keywords. In the experimental process of this research, it can be found that the method proposed in this paper has a higher accuracy than other methods in extracting hot keywords, which can ensure the timeliness and accuracy of scientific journals in capturing hot topics in the discipline, and finally pass Use information technology to master popular key words.
휴대폰에서 문자 메시지 전송 기능은 현대인들에게 매우 편리한 새로운 형태의 의사소통 방식이다. 반면에 문자 메시지 기능을 악용한 광고성 문자들이 너무 많이 쏟아져서 휴대폰 사용자들은 스팸 문자 공해에 시달리는 심각한 부작용을 낳게 되었다. 광고성 문자를 발송하는 사람들은 문자 메시지가 자동으로 차단되는 것을 회피하기 위해 한글 문장을 다양한 형태로 변형하거나 왜곡시키고 있으며, 이러한 문자 메시지를 자동으로 차단하기 위해서는 변형되거나 왜곡된 문장들을 정상적인 한글 문장으로 정규화하는 기술이 필수적이다. 본 논문에서는 변형되거나 왜곡된 광고성 문자 메시지를 정상적인 문장으로 정규화하고 정규화된 문장으로부터 자동 띄어쓰기 및 복합명사 분해 과정을 거쳐 키워드를 추출하기 위한 방법을 제안하였다.
딥러닝에서 자연어 처리를 위한 텍스트 분석 기법은 워드 임베딩을 통해 단어를 벡터 형태로 표현한다. 본 논문에서는 워드 임베딩 기법과 딥러닝 기법을 이용하여 SMS 문자 메시지를 문서 벡터로 구성하고 이를 스팸 문자 메시지와 정상적인 문자 메시지로 분류하는 방법을 제안하였다. 유사한 문맥을 가진 단어들은 벡터 공간에서 인접한 벡터 공간에 표현되도록 하기 위해 전처리 과정으로 자동 띄어쓰기를 적용하고 스팸 문자 메시지로 차단되는 것을 피하기 위한 목적으로 음절의 자모를 특수기호로 왜곡하여 맞춤법이 파괴된 상태로 단어 벡터와 문장 벡터를 생성하였다. 또한 문장 벡터 생성 시 CBOW와 skip gram이라는 두 가지 워드 임베딩 알고리즘을 적용하여 문장 벡터를 표현하였으며, 딥러닝을 이용한 스팸 문자 메시지 필터링의 성능 평가를 위해 SVM Light와 정확도를 비교 측정하였다.
This study investigates issues in relation to text segmenting, in particular, line breaks in Korean language textbooks. Research on L1 and L2 reading has shown that readers process texts by chunking (grouping words into phrases or meaningful syntactic units) and, therefore, phrase-cued texts are helpful for readers whose syntactic knowledge has not yet been fully developed. In other words, it would be important for language textbooks to avoid awkward syntactic divisions at the end of a line, in particular, those textbooks for beginners and intermediate level learners. According to our analysis of a number of major Korean language textbooks for beginner-level learners, however, many textbooks were found to display line-breaks of awkward syntactic division. Moreover, some textbooks displayed frequent instances where a single word (or eojeol in the case of Korean) is split between different lines. This can hamper not only learners' learning of the rules of spaces between eojeols in Korean, but also learners' development in automatic word recognition, which is an essential part of reading processes. Based on the findings of our textbook analysis and of existing research on reading, this study suggests ways to overcome awkward line-breaks in Korean language textbooks.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.