• Title/Summary/Keyword: Korean whole wheat flour

Search Result 81, Processing Time 0.016 seconds

Effects of Various Diets on Growth and Body Composition of Juvenile Parrot Fish, Oplegnathus fasciatus (먹이 종류가 돌돔 Oplegnathus fasciatus 치어의 성장 및 체성분에 미치는 영향)

  • Moon Lee, HaeYoung;Nam, Myung-Mo
    • Korean Journal of Ichthyology
    • /
    • v.27 no.4
    • /
    • pp.293-299
    • /
    • 2015
  • The feeding experiment was conducted to investigate the effects of one experimental diet (EDP) and five different commercial diets (CEPs) on growth and body composition for juvenile parrot fish, Oplegnathus fasciatus. An EDP was formulated to contain 50% crude protein (CP) from fishmeal, casein, zein and wheat flour and 15% crude lipid (CL) from squid liver oil. Five CEPs for seawater fish were two domestic E commercial diet (DECD) and C commercial diet (DCCD), three imported H commercial diet (IHCD), L commercial diet (ILCD) and O commercial diet (IOCD) containing 53.1~66.6% CP and 10.7~14.6% CL, respectively. Each diet was fed to triplicate groups of juvenile parrot fish initially weighing $1.14{\pm}.01g/fish$ (mean${\pm}$SD) in a flow-through seawater system with a water temperature of $19.0{\sim}25.0^{\circ}C$. Weight gain (WG) and feed efficiency (FE) were significantly greatest in fish fed the DCCD and IOCD; intermediate responses were observed for fish fed the ILCD, while the IECD, IHCD, and the EDP produced the lowest WG and FE values. Survival with no significant difference approached 100% for fish fed the all six diets in this experiment. Whole-body moisture, protein, lipid and ash contents were not affected by the different type of diets. Therefore, type of diets appeared to be important factor in influencing WG and FE of juvenile parrot fish; the best diets for juvenile parrot fish was determined to be the domestic commercial C and the imported commercial O diets containing high protein (61.3, 66.6%) and lipid (14.6, 13.0%) in natural seawater based on highest WG, and FE, respectively. This study indicates that the two commercially formulated diets containing two highest proteins and lipids used in this experiment could be practical diets for juvenile parrot fish; these differences of growth performance between experimental diet and commercial diets may be reason for different dietary protein and lipid levels.