• Title/Summary/Keyword: Korean waters of the East Sea

Search Result 523, Processing Time 0.031 seconds

Determination of Total CO2 and Total Alkalinity of Seawater Based on Thermodynamic Carbonate Chemistry (해수중의 총이산화탄소와 총알칼리도 분석을 위한 탄산염 화학 이론 및 측정방법)

  • Mo, Ahra;Son, Juwon;Park, Yongchul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • To evaluate accuracy and precision of determination of total alkalinity ($Alk_T$) and carbon dioxide ($TCO_2$) derived from present study, experiment was applied with $CO_2$ CRM (Batch 132, Scripps Institution of Oceanography; $Alk_T=2229.24{\pm}0.39{\mu}mol/kg$, $TCO_2=2032.65{\pm}0.45{\mu}mol/kg$). As the result, average concentration of $Alk_T$ and $TCO_2$ was $2354.09{\mu}mol/kg$ (~5.6% difference with $CO_2$ CRM) and $2089.60{\mu}mol/kg$ (~2.3% difference with $CO_2$ CRM), respectively. For previous method (Gran Titration) by addition $NaHCO_3$ to deionized water($Alk_T$ $2023.33{\mu}mol/kg$), average concentration was $2193.39{\mu}mol/kg$ (sd=57.15, n=7). Whereas, average concentration was $2017.02{\mu}mol/kg$ (sd=10.98, n=7) for the present study. Recovery yield experiments of total alkalinity in deionized water and seawater were implemented by addition of $NaHCO_3$. The recovery yield of deionized water in the range 0 to $4952.39{\mu}mol/kg$ was 100.8% ($R^2$=0.999), and seawater in the range 0 to $2041.32{\mu}mol/kg$ was 102.3% ($R^2$=0.999). Comparison of $pCO_2$ sensor (PSI $CO_2-Pro^{TM}$) with present method showed very meaningful correlation coefficient ($R^2$=0.977) in the range of 427 to $705{\mu}atm$ and 9.16 to $15.24{\mu}mol/kg$ throught elapsed time for two weeks. Field experiment of diurnal variation of total carbon dioxide was accomplished at Sachon harbor in the coastal waters of East Sea of Korea. Concentration of $Alk_T$ and $TCO_2$ was increased during night, and decreased during daylight hours. The results showed mirror type between $TCO_2$ and dissolved oxygen, which was attributable to photosynthesis and respiration of phytoplankton. Also, open ocean field study was performed to obtain vertical profile of $Alk_T$ and $TCO_2$ in C-C zone (Clarion-Clipperton Fracture Zone), Northeastern Pacific. Average concentrations of $Alk_T$ in the surface mixed layer (0~60 m) and deeper layer below 200 m were $2422.38{\mu}mol/kg$ (sd=78.73, n=20) and $2465.87{\mu}mol/kg$ (sd=57.68, n=103), respectively. And average concentrations of $TCO_2$ were $2134.47{\mu}mol/kg$ (sd=65.4, n=20) and $2431.87{\mu}mol/kg$ (sd=65.02, n=103) in the same depth ranges such as $Alk_T$. Vertical distributions of $Alk_T$ and $TCO_2$ concentrations tended to increase with depth, and analyzed concentrations showed slightly higher than those of previous studies in this area.

Studies on the Fishery Biology of Pomfrets, Pampus spp. in the Korean Waters 2. Gonadal Maturation and Spawning (한국근해 병어류의 자원생물학적 연구 2. 성숙과 산난)

  • LEE Taek Yuil;Jin Jong Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.22 no.5
    • /
    • pp.266-280
    • /
    • 1989
  • Gonadal maturation of the Korean pomfrets, Pampus echinogaster (Basilewsky) and Pampus argenteus (Euphrasen) were histologically investigated based on the samples captured in the East China Sea from January 1987 to December 1988. Gonadosomatic index (GSI) of P. echinogaster began to increase from March, and reached maximum between May and July. It began to decrease from July and reached mini-mum between August and February. P. argenteus had a similar cycle, however, P. argenteus has higher values in April than P. echinogaster. Hepatosomatic index (HSI) were positively related to GSI. HIS of P. echinogaster and P. argenteus reached maximum in $April\~July$ and $April\~August$, respectively, Fatness coefficient of two Pampus species were low in the summer, and high in the winter. Ovary is of saccular structure, and testis is of lobular structure. From February, the early oocyte (ca. $100\mu$ in diameter grows) rapidly at the germinal epithelium of ovarian sacs. From March to April the oocytes grew up to cu $400\~500\mu$ in diameter. At this stage, the yolk globules are accumulated rapidly in the cytoplasmic layer. From May, the oocytes roached ca. $650\~850\mu$ in diameter, and they are spawned in $May\~July$. After spawning the residual follicles and remained ripe eggs degenerate. From February, spermatogonia grows into spermatocyte on the epithelium of the testicular lobuli. From May, spermatozoa appeared and spawning occurs. After spawning, the epithelium is thickened and the remained spermatozoa degenerate. Annual reproductive cycle of two Pampus species could be divided into four successive stages: Growing stage ($March\~April$), Mature stage ($April\~May$), Ripe and spent stage ($June\~July$) and Recovery and resting stage ($August\~January$). Absolute fecundity of P. echinogaster was $9,441\~135,294$, and that of P. argenteus was $50,678\~221,894$. Absolute fecundity of two Pampus species were positively related to body length and total weight. Relative fecundity was positively related to body length, while it was reversely related to total weight. The increasing rate of absolute fecundity of P. echinogaster was lower than P. argenteus. In P. echinogaster half of female and male reached first maturity at body length of $15.0\~$17.9cm and $12.0\~14.9cm$, respectively. All of females and males reached first maturity at body length of $18.0\~20.9cm$ and $21.0\~23.9cm, respectively. In P. argenteus all of females and males reached first maturity at body length of 18.6cm and 16.7cm$, respectively.

  • PDF

Reproductive Cycle of Ribbed Gunnel Dictyosoma burgeri (그물베도라치 Dictyosoma burgeri의 생식주기)

  • Jin, Young Seok;Han, Jae Il;Park, Chang Beom;Lee, Chi Hoon;Kim, Byung Ho;Baek, Hea Ja;Kim, Hyung Bae;Lee, Young-Don
    • Korean Journal of Ichthyology
    • /
    • v.19 no.1
    • /
    • pp.8-15
    • /
    • 2007
  • The morphology of gonad and reproductive cycle of ribbed gunnel (Dictyosoma burgeri) were investigated on the basis of histological observation. The specimens were monthly sampled in the coastal waters of Jeju from November 2001 to February 2003. The ovaries and testis of this species are categorized as cystovarian and lobule type, respectively. The gonadosomatic index (GSI) of female increased in November and maintained high values from December to February. The GSI of male was similar to that of female although it was decreased in February. The reproductive cycle can be grouped into the following successive stage in the ovary: growth (October to November), mature (November to February), spawning (January to February), and degenerating and recovery (March to September). And in the testis, the stage observed were: multiplication (August to November), growth (November to January), mature and spawning (November to February), and degenerating and recovery (January to September). The minimum maturation size of D. burgeri was over 15.0 cm and fecundity ranged from 2,194 to 6,581 eggs. The relationship between the fecundity and fish body was calculated in the fecundity (F) equation as: $F=0.4057TL^{3.1425}$ ($R^2=0.7621$) for total length (TL); $F=149.88BW^{0.9579}$ ($R^2=0.7982$) for body weight (BW), respectively. The fecundity was correlated positively with TL and BW. The histological observations of the gonads suggested that major spawning of this species probably occurs between January to February, when low water temperature ($13{\pm}0.3^{\circ}C$) period.