• Title/Summary/Keyword: Korean tooth models

Search Result 246, Processing Time 0.029 seconds

Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition

  • Rhee, Ye-Kyu;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.460-467
    • /
    • 2015
  • PURPOSE. The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. MATERIALS AND METHODS. Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For two-dimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. RESULTS. In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. CONCLUSION. The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05).

Evaluation of biogeneric design techniques with CEREC CAD/CAM system

  • Arslan, Yeliz;Nemli, Secil Karakoca;Gungor, Merve Bankoglu;Tamam, Evsen;Yilmaz, Handan
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.431-436
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate occlusal contacts generated by 3 different biogeneric design modes (individual (BI), copy (BC), reference (BR)) of CEREC software and to assess the designs subjectively. MATERIALS AND METHODS. Ten pairs of maxillary and mandibular casts were obtained from full dentate individuals. Gypsum cast contacts were quantified with articulating paper and digital impressions were taken. Then, all ceramic crown preparation was performed on the left first molar teeth and digital impressions of prepared teeth were made. BI, BC, and BR crowns were designed. Occlusal images of designs including occlusal contacts were superimposed on the gypsum cast images and corresponding contacts were determined. Three designs were evaluated by the students. RESULTS. The results of the study revealed that there was significant difference among the number of contacts of gypsum cast and digital models (P<.05). The comparison of the percentage of virtual contacts of three crown designs which were identical to the contacts of original gypsum cast revealed that BI and BR designs showed significantly higher percentages of identical contacts compared with BC design (P<.05). Subjective assessment revealed that students generally found BI designs and BR designs natural regarding naturalness of fissure morphology and cusp shape and cusp tip position. For general occlusal morphology, student groups generally found BI design "too strong" or "perfect", BC design "too weak", and BR design "perfect". CONCLUSION. On a prepared tooth, three different biogeneric design modes of a CAD/CAM software reveals different crown designs regarding occlusal contacts and morphology.

The influence of various core designs on stress distribution in the veneered zirconia crown: a finite element analysis study

  • Ha, Seung-Ryong;Kim, Sung-Hun;Han, Jung-Suk;Yoo, Seung-Hyun;Jeong, Se-Chul;Lee, Jai-Bong;Yeo, In-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.187-197
    • /
    • 2013
  • PURPOSE. The purpose of this study was to evaluate various core designs on stress distribution within zirconia crowns. MATERIALS AND METHODS. Three-dimensional finite element models, representing mandibular molars, comprising a prepared tooth, cement layer, zirconia core, and veneer porcelain were designed by computer software. The shoulder (1 mm in width) variations in core were incremental increases of 1 mm, 2 mm and 3 mm in proximal and lingual height, and buccal height respectively. To simulate masticatory force, loads of 280 N were applied from three directions (vertical, at a $45^{\circ}$ angle, and horizontal). To simulate maximum bite force, a load of 700 N was applied vertically to the crowns. Maximum principal stress (MPS) was determined for each model, loading condition, and position. RESULTS. In the maximum bite force simulation test, the MPSs on all crowns observed around the shoulder region and loading points. The compressive stresses were located in the shoulder region of the veneer-zirconia interface and at the occlusal region. In the test simulating masticatory force, the MPS was concentrated around the loading points, and the compressive stresses were located at the 3 mm height lingual shoulder region, when the load was applied horizontally. MPS increased in the shoulder region as the shoulder height increased. CONCLUSION. This study suggested that reinforced shoulder play an essential role in the success of the zirconia restoration, and veneer fracture due to occlusal loading can be prevented by proper core design, such as shoulder.

Evaluation of repeated measurement stability of dentition type of maxillary anterior tooth: an in vitro study (상악 전치의 치열 형태에 따른 스캔 반복 측정 안정성 평가: in vitro 연구)

  • Park, Dong-In;Son, Ho-Jung;Kim, Woong-Chul;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.41 no.3
    • /
    • pp.211-217
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate the repeated measurement stability of scans related to dentition type. Methods: A normal model and the crowding and diastema models are also duplicated using duplicating silicon. After that, a plaster model is made using a plaster-type plaster on the duplicate mold, and each model is scanned 5 times by using an extraoral scanner. The gingival part and molar part were deleted from the 3D STL file data obtained through scanning. Using the 3D stl file obtained in this way, data is nested between model groups. Thereafter, RMS values obtained were compared and evaluated. The normality test of the data was performed for the statistical application of repeated measurements with dentition type, and the normality was satisfied. Therefore, the one-way ANOVA test, which is a parametric statistical method, was applied, and post-tests were processed by the Scheffe method. Results: The average size of each RMS in the Normal, Diastema, and Crowding groups was Normal> Crowding> Diastema. However, the standard deviation was in the order of Crowding> Normal> Diastema. The average value of each data is as follows. Diastema model was the smallest ($5.51{\pm}0.55{\mu}m$), followed by the crowding model ($12.30{\pm}2.50{\mu}m$). The normal model showed the maximum error ($13.23{\pm}1.06{\mu}m$). Conclusion: There was a statistically significant difference in the repeatability of the scanning measurements according to the dentition type. Therefore, you should be more careful when scanning the normal intense or crowded dentition than scanning the interdental lining. However, this error value was within the range of applicable errors for all clinical cases.

Analysis of Needs for Clinical Dental Hygienist's Performances Using Borich Needs Assessment and the Locus for Focus Model

  • Yang-Keum Han;An-Na Yeo
    • Journal of dental hygiene science
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Background: This study aimed to identify the present level and needs of clinical dental hygienists and to present the Borich needs assessment and the locus for focus model as integrated priorities. Methods: The participants of this study were dental hygienists working in dental clinics (hospitals). The final data of the 194 participants were analyzed using frequency analysis and a paired sample t-test. To analyze the need for clinical dental hygienists to perform work, the Borich priority determination formula was used. The x-y plane consisting of four quadrants was used to analyze the need using the locus for focus model, which helps to determine the priority while showing visual effects. Results: "Scaling" was the highest required level for clinical dental hygienists, and "panorama taking" was the highest present level. The priorities of educational needs were systematically and visually derived from dental hygienists who were currently working through the Borich needs assessment and the locus for focus model for each task performed in the clinical field. Through the priorities of these two models, a total of 13 items appeared in the common high-level area; "oral health care (disability)," "oral health care (systemic disease)," "applying a rubber dam," "professional mechanical tooth cleaning," "root planing," "taking vital signs," "medication counseling," "wire cutting," "removing cement after removing band/bracket," "delivering bracket," "preparing mini-screw implantation," "dental insurance claim," and "patient reception." Conclusion: Based on the results, the department of dental hygiene should maintain and improve the standardized clinical practice curriculum and clinical dental hygienists' practical skills and contribute to the realization of the legal scope of dental hygienists, reflecting the requirements of clinical fields.

Effect of scanning strategies on the accuracy of digital intraoral scanners: a meta-analysis of in vitro studies

  • Louis Hardan;Rim Bourgi;Monika Lukomska-Szymanska;Juan Carlos Hernandez-Cabanillas;Juan Eliezer Zamarripa-Calderon;Gilbert Jorquera;Sinan Ghishan;Carlos Enrique Cuevas-Suarez
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.6
    • /
    • pp.315-332
    • /
    • 2023
  • PURPOSE. This study aimed to investigate whether the accuracy of intraoral scanners is influenced by different scanning strategies in an in vitro setting, through a systematic review and meta-analysis. MATERIALS AND METHODS. This review was conducted in accordance with the PRISMA 2020 standard. The following PICOS approach was used: population, tooth impressions; intervention, the use of intraoral scanners with scanning strategies different from the manufacturer's instructions; control, the use of intraoral scanners following the manufacturers' requirements; outcome, accuracy of intraoral scanners; type of studies, in vitro. A comprehensive literature search was conducted across various databases including Embase, SciELO, PubMed, Scopus, and Web of Science. The inclusion criteria were based on in vitro studies that reported the accuracy of digital impressions using intraoral scanners. Analysis was performed using Review Manager software (version 5.3.5; Cochrane Collaboration, Copenhagen, Denmark). Global comparisons were made using a standardized mean difference based on random-effect models, with a significance level of α = 0.05. RESULTS. The meta-analysis included 15 articles. Digital impression accuracy significantly improved under dry conditions (P < 0.001). Moreover, trueness and precision were enhanced when artificial landmarks were used (P ≤ 0.02) and when an S-shaped pattern was followed (P ≤ 0.01). However, the type of light used did not have a significant impact on the accuracy of the digital intraoral scanners (P ≥ 0.16). CONCLUSION. The accuracy of digital intraoral scanners can be enhanced by employing scanning processes using artificial landmarks and digital impressions under dry conditions.

Real-time Tooth Region Detection in Intraoral Scanner Images with Deep Learning (딥러닝을 이용한 구강 스캐너 이미지 내 치아 영역 실시간 검출)

  • Na-Yun, Park;Ji-Hoon Kim;Tae-Min Kim;Kyeong-Jin Song;Yu-Jin Byun;Min-Ju Kang․;Kyungkoo Jun;Jae-Gon Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.1-6
    • /
    • 2023
  • In the realm of dental prosthesis fabrication, obtaining accurate impressions has historically been a challenging and inefficient process, often hindered by hygiene concerns and patient discomfort. Addressing these limitations, Company D recently introduced a cutting-edge solution by harnessing the potential of intraoral scan images to create 3D dental models. However, the complexity of these scan images, encompassing not only teeth and gums but also the palate, tongue, and other structures, posed a new set of challenges. In response, we propose a sophisticated real-time image segmentation algorithm that selectively extracts pertinent data, specifically focusing on teeth and gums, from oral scan images obtained through Company D's oral scanner for 3D model generation. A key challenge we tackled was the detection of the intricate molar regions, common in dental imaging, which we effectively addressed through intelligent data augmentation for enhanced training. By placing significant emphasis on both accuracy and speed, critical factors for real-time intraoral scanning, our proposed algorithm demonstrated exceptional performance, boasting an impressive accuracy rate of 0.91 and an unrivaled FPS of 92.4. Compared to existing algorithms, our solution exhibited superior outcomes when integrated into Company D's oral scanner. This algorithm is scheduled for deployment and commercialization within Company D's intraoral scanner.

Effects of the cone-beam computed tomography protocol on the accuracy and image quality of root surface area measurements: An in vitro study

  • Chanikarn Intarasuksanti;Sangsom Prapayasatok;Natnicha Kampan;Supassara Sirabanchongkran;Pasuk Mahakkanukrauh;Thanapat Sastraruji;Pathawee Khongkhunthian;Kachaphol Kuharattanachai;Kanich Tripuwabhrut
    • Imaging Science in Dentistry
    • /
    • v.53 no.4
    • /
    • pp.325-333
    • /
    • 2023
  • Purpose: The objective of this study was to evaluate and compare the accuracy and image quality of root surface area (RSA) measurements obtained with various cone-beam computed tomography (CBCT) protocols, relative to the gold standard of micro-computed tomography (CT), in an in vitro setting. Materials and Methods: Four dry human skulls were scanned using 8 different protocols, with voxel sizes of 0.15 mm, 0.3 mm, and 0.4 mm. Three-dimensional models of the selected teeth were constructed using CBCT and microCT protocols, and the RSA was automatically measured by the image-processing software. The absolute difference in the percentage of the RSA(%ΔRSA) was calculated and compared across the 8 CBCT protocols using repeatedmeasures analysis of variance. Finally, image quality scores of the RSA measurements were computed and reported in terms of percent distribution. Results: No significant differences were observed in the %ΔRSA across the 8 protocols (P>0.05). The deviation in %ΔRSA ranged from 1.51% to 4.30%, with an increase corresponding to voxel size. As the voxel size increased, the image quality deteriorated. This decline in quality was particularly noticeable at the apical level of the root, where the distribution of poorer scores was most concentrated. Conclusion: Relative to CBCT protocols with voxel sizes of 0.15mm and 0.3mm, the protocols with a voxel size of 0.4 mm demonstrated inferior image quality at the apical levels. In spite of this, no significant discrepancies were observed in RSA measurements across the different CBCT protocols.

Effects of a modified surgical protocol on the positional accuracy of dental implants placed using fully guided implant surgery in the partially edentulous posterior ridge with distal extension: a dentiform model study

  • Young Woo Song;Seung Ha Yoo;Ui-Won Jung
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • PURPOSE. The present experiment aimed to evaluate the placement accuracy of fully guided implant surgery using a mucosa-supported surgical guide when the protocol of osteotomy and installation was modified (MP) compared to when the protocol was sequentially and conventionally carried out (CP). MATERIALS AND METHODS. For 24 mandibular dentiform models, 12 dentists (6 experts and 6 beginners) performed fully guided implant placements two times at the right first and second molar sites using a mucosa-supported surgical guide, once by the CP (CP group) and at the other time by the MP (MP group). The presurgical and postsurgical stereolithographic images were superimposed, and the deviations between the virtually planned and actually placed implant positions and the procedure time were compared statistically (P < .05). RESULTS. The accuracies were similar in the CP and MP groups. In the CP group, the mean platform and apex deviations at the second molar site for the beginners were +0.75 mm and +1.14 mm, respectively, which were significantly larger than those for the experts (P < .05). In the MP group, only the mean vertical deviation at the second molar site for the beginners (+0.53 mm) was significantly larger than that for the experts (P < .05). The procedure time was significantly longer for the MP group (+94.0 sec) than for the CP group (P < .05). CONCLUSION. In fully guided implant surgery using a mucosa-supported guide, the MP may improve the placement accuracy when compared to the CP, especially at sites farther from the most-posterior natural tooth.

The effect of bracket width on frictional force between bracket and arch wire during sliding tooth movement (치아의 활주 이동시 브라켓 폭이 브라켓과 호선 사이의 마찰력에 미치는 효과)

  • Choi, Won-Cheul;Kim, Tae-Woo;Park, Joo-Young;Kwak, Jae-Hyuk;Na, Hyo-Jeong;Park, Du-Nam
    • The korean journal of orthodontics
    • /
    • v.34 no.3 s.104
    • /
    • pp.253-260
    • /
    • 2004
  • Frictional force between the orthodontic bracket and arch wire during sliding tooth movement is related to many factors, such as the size, shape and material of both the bracket and wire, ligation method and the angle formed between the bracket and wire. There have been clear conclusions drawn in regard to most of these factors, but as to the effect of bracket width on frictional force there are only conflicting studies. This study was designed to investigate the effect of bracket width on the amount of frictional forces generated during clinically simulated tooth movement. Three different widths of brackets $(0.018{\times}0.025'\;standard)$ narrow (2.40mm), medium (3.00mm) and wide (4.25mm) were used in tandem with $0.016{\times}0.022'$ stainless steel wire. Three bracket-arch wire combinations were drawn on for 4 minutes on a testing apparatus with a head speed of 0.5mm/min and tested 7 times each. To reproduce biological conditions, dentoalveolar models were designed with indirect technique using a material with similar elastic properties as periodontal ligament (PDL). In addition, to minimize the effect of ligation force, elastomer was used with added resin, which was attached to the bracket to make up for the discrepancies of bracket width. The results were as follows: 1. Maximum frictional force for each bracket-arch wire combination was: Narrow (2.40mm): $68.09\pm4.69gmf$ Medium (3.00mm): $72.75\pm4.98 gmf$ Wide (4.25mm): $72.59\pm4.54gmf$ 2. Frictional force was increased with more displacement of wire through the bracket slot. 3. The ANOVA psot-hoc test showed that the bracker width had no significant effect on frictional force when tested under clinically simulated conditions(p>0.05).