• Title/Summary/Keyword: Korean text classification

Search Result 413, Processing Time 0.024 seconds

CNN Architecture Predicting Movie Rating from Audience's Reviews Written in Korean (한국어 관객 평가기반 영화 평점 예측 CNN 구조)

  • Kim, Hyungchan;Oh, Heung-Seon;Kim, Duksu
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • In this paper, we present a movie rating prediction architecture based on a convolutional neural network (CNN). Our prediction architecture extends TextCNN, a popular CNN-based architecture for sentence classification, in three aspects. First, character embeddings are utilized to cover many variants of words since reviews are short and not well-written linguistically. Second, the attention mechanism (i.e., squeeze-and-excitation) is adopted to focus on important features. Third, a scoring function is proposed to convert the output of an activation function to a review score in a certain range (1-10). We evaluated our prediction architecture on a movie review dataset and achieved a low MSE (e.g., 3.3841) compared with an existing method. It showed the superiority of our movie rating prediction architecture.

A Suggestion of the Direction of Construction Disaster Document Management through Text Data Classification Model based on Deep Learning (딥러닝 기반 분류 모델의 성능 분석을 통한 건설 재해사례 텍스트 데이터의 효율적 관리방향 제안)

  • Kim, Hayoung;Jang, YeEun;Kang, HyunBin;Son, JeongWook;Yi, June-Seong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.5
    • /
    • pp.73-85
    • /
    • 2021
  • This study proposes an efficient management direction for Korean construction accident cases through a deep learning-based text data classification model. A deep learning model was developed, which categorizes five categories of construction accidents: fall, electric shock, flying object, collapse, and narrowness, which are representative accident types of KOSHA. After initial model tests, the classification accuracy of fall disasters was relatively high, while other types were classified as fall disasters. Through these results, it was analyzed that 1) specific accident-causing behavior, 2) similar sentence structure, and 3) complex accidents corresponding to multiple types affect the results. Two accuracy improvement experiments were then conducted: 1) reclassification, 2) elimination. As a result, the classification performance improved with 185.7% when eliminating complex accidents. Through this, the multicollinearity of complex accidents, including the contents of multiple accident types, was resolved. In conclusion, this study suggests the necessity to independently manage complex accidents while preparing a system to describe the situation of future accidents in detail.

AI-based stuttering automatic classification method: Using a convolutional neural network (인공지능 기반의 말더듬 자동분류 방법: 합성곱신경망(CNN) 활용)

  • Jin Park;Chang Gyun Lee
    • Phonetics and Speech Sciences
    • /
    • v.15 no.4
    • /
    • pp.71-80
    • /
    • 2023
  • This study primarily aimed to develop an automated stuttering identification and classification method using artificial intelligence technology. In particular, this study aimed to develop a deep learning-based identification model utilizing the convolutional neural networks (CNNs) algorithm for Korean speakers who stutter. To this aim, speech data were collected from 9 adults who stutter and 9 normally-fluent speakers. The data were automatically segmented at the phrasal level using Google Cloud speech-to-text (STT), and labels such as 'fluent', 'blockage', prolongation', and 'repetition' were assigned to them. Mel frequency cepstral coefficients (MFCCs) and the CNN-based classifier were also used for detecting and classifying each type of the stuttered disfluency. However, in the case of prolongation, five results were found and, therefore, excluded from the classifier model. Results showed that the accuracy of the CNN classifier was 0.96, and the F1-score for classification performance was as follows: 'fluent' 1.00, 'blockage' 0.67, and 'repetition' 0.74. Although the effectiveness of the automatic classification identifier was validated using CNNs to detect the stuttered disfluencies, the performance was found to be inadequate especially for the blockage and prolongation types. Consequently, the establishment of a big speech database for collecting data based on the types of stuttered disfluencies was identified as a necessary foundation for improving classification performance.

A Study on Automatic Classification of Record Text Using Machine Learning (기계학습을 이용한 기록 텍스트 자동분류 사례 연구)

  • Kim, Hae Chan Sol;An, Dae Jin;Yim, Jin Hee;Rieh, Hae-Young
    • Journal of the Korean Society for information Management
    • /
    • v.34 no.4
    • /
    • pp.321-344
    • /
    • 2017
  • Research on automatic classification of records and documents has been conducted for a long time. Recently, artificial intelligence technology has been developed to combine machine learning and deep learning. In this study, we first looked at the process of automatic classification of documents and learning method of artificial intelligence. We also discussed the necessity of applying artificial intelligence technology to records management using various cases of machine learning, especially supervised methods. And we conducted a test to automatically classify the public records of the Seoul metropolitan government into BRM using ETRI's Exobrain, based on supervised machine learning method. Through this, we have drawn up issues to be considered in each step in records management agencies to automatically classify the records into various classification schemes.

A Harmful Site Judgement Technique based on Text (문자 기반 유해사이트 판별 기법)

  • Jung, Kyu-Cheol;Lee, Jin-Kwan;Lee, Taehun;Park, Kihong
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.5
    • /
    • pp.83-91
    • /
    • 2004
  • Through this research, it was possible to set up classification system between 'Harmful information site' and 'General site' that badly effect to teenagers emotional health. To intercept those entire harmful information sites, it using contents basis isolating. Instead of using existing methods, it picks most frequent using composed key words and adds all those harmful words' harmfulness degree point by using 'ICEC(Information Communication Ethics Committee)' suggested harmful word classification. To testify harmful information blocking system, to classify the harmful information site, set standard harmfulness degree point as 3.5 by the result of a fore study, after that pick up a hundred of each 'Harmful information site' and 'General site' randomly to classify them through new classification system. By this classification could found this new classification system classified 78% of 'Harmful Site' to "Harmful information site' and 96% of 'General Site' to 'General site'. As a result, successfully confirm validity of this new classification system.

  • PDF

Classification of ratings in online reviews (온라인 리뷰에서 평점의 분류)

  • Choi, Dongjun;Choi, Hosik;Park, Changyi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.845-854
    • /
    • 2016
  • Sentiment analysis or opinion mining is a technique of text mining employed to identify subjective information or opinions of an individual from documents in blogs, reviews, articles, or social networks. In the literature, only a problem of binary classification of ratings based on review texts in an online review. However, because there can be positive or negative reviews as well as neutral reviews, a multi-class classification will be more appropriate than the binary classification. To this end, we consider the multi-class classification of ratings based on review texts. In the preprocessing stage, we extract words related with ratings using chi-square statistic. Then the extracted words are used as input variables to multi-class classifiers such as support vector machines and proportional odds model to compare their predictive performances.

The Comparison of Neural Network and k-NN Algorithm for News Article Classification (신경망 또는 k-NN에 의한 신문 기사 분류와 그의 성능 비교)

  • 조태호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.363-365
    • /
    • 1998
  • 텍스트 마이닝(Text Mining)이란 텍스트형태의 문서들의 패턴 또는 관계를 추출하여 사용자가 원하는 새로운 정보를 가공하거나 기존의 정보를 변형하는 과정을 말한다. 텍스트 마이닝의 기능에는 문서 범주화(Document Categorization), 문서 군집화(Document Clustering), 그리고 문서 요약(Document Summarization)이 이에 해당된다. 문서 범주화란 문서에게 사전에 정의한 범주를 부여하는 과정을 말하고, 문서 군집화란 문서들을 계층적 구조로 형성하는 과정을 말하고, 문서 요약이란 문서의 전체 내용을 대표할 수 있는 내용의 일부만을 추출하는 과정을 말한다. 이 논문에서는 문서 범주화만을 다룰 것이며 그 대상으로는 신문기사로 설정하였다. 그의 범주는 4가지로 정치, 경제, 스포츠, 그리고 정보통신으로 설정하였다. 문서 범주화는 문서 분류(Document Classification)라고도 하며 문서에 범주를 자동으로 부여하여 기존에 인위적으로 부여함으로써 소요되는 시간과 비용을 절감하는 것이 목적이다. 문서 범주화에 대하여 k-NN(k-Nearest Neighbor)와 신경망을 이용하였으며, 신경망을 이용한 경우가 k-NN을 이용한 경우보다 성능이 우수하였다.

  • PDF

Analysis of Automatic Topic Classification using Youtube Meta Information (유튜브 메타정보를 이용한 자동 주제 분류 고찰)

  • Kim, Yong-Woo;Jeon, Seong-Bae;Jung, Yuchul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.349-351
    • /
    • 2021
  • Youtube 동영상 업로드 시, 사용자가 직접 주제를 설정해야 하는 어려움이 있다. 본 연구에서는 사용자가 입력하는 제목과 설명정보를 이용하여 자동으로 주제를 분류하는 연구를 진행하였다. 이를 위해 한국어기반의 컨텐츠 중 고빈도의 8개 주제 카테고리를 선정하고, 이를 1.3만건의 학습데이터를 크롤링을 통해 구축하였다. 또한, 다양한 알고리즘들에 대한 최대성능을 확인하기 위해 대표적인 텍스트 분류 방법인 SVM과 LSTM기법 및 BERT 모델기반 미세적용(fine-tuning)을 시도하였다. 결과적으로 Bert-multiligual (base)를 fine-tuning한 실험에서 최대 94%의 정확도를 확인하였다. 하지만, Youtube 동영상 특성상 여러 주제를 가진 것들이 상당수 존재하기에, 실제 체감정확도는 더 높을 것으로 기대된다.

  • PDF

Keyword Extraction from News Corpus using Modified TF-IDF (TF-IDF의 변형을 이용한 전자뉴스에서의 키워드 추출 기법)

  • Lee, Sung-Jick;Kim, Han-Joon
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.4
    • /
    • pp.59-73
    • /
    • 2009
  • Keyword extraction is an important and essential technique for text mining applications such as information retrieval, text categorization, summarization and topic detection. A set of keywords extracted from a large-scale electronic document data are used for significant features for text mining algorithms and they contribute to improve the performance of document browsing, topic detection, and automated text classification. This paper presents a keyword extraction technique that can be used to detect topics for each news domain from a large document collection of internet news portal sites. Basically, we have used six variants of traditional TF-IDF weighting model. On top of the TF-IDF model, we propose a word filtering technique called 'cross-domain comparison filtering'. To prove effectiveness of our method, we have analyzed usefulness of keywords extracted from Korean news articles and have presented changes of the keywords over time of each news domain.

  • PDF

Automatic Text Classification by Learning from Unlabeled Data (레이블이 없는 데이터로부터의 학습에 의한 자동 문서 분류)

  • 박성배;김유환;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.265-267
    • /
    • 2001
  • 본 논문에서는 레이블이 없는 데이터를 이용하는 새로운 자동 문서 분류 방법을 제시한다. 제시된 방법은 적은 수의 레이블이 있는 데이터로부터 학습된 후 많은 수의 레이블이 없는 데이터로 보강되는 일련의 분류기(classifier)에 기반한다. 레이블이 없는 데이터를 활용하기 때문에, 필요한 레이블이 있는 데이터의 수가 줄어들고, 분류 정확도가 향상된다. 두 개의 표준 데이터 집합에 대한 실험 결과, 레이블이 없는 데이터를 사용함으로써 분류 정확도가 증가함을 보였다. 분류 정확도는 전체 데이터의 2/3만 사용하고도 NIPS 2000 워크숍 데이터 집합에 대해서는 약 7.9% 정도, WebKB 데이터 집합에 대해서는 9.2% 증가하였다.

  • PDF