• Title/Summary/Keyword: Korean spelling and grammar checker

Search Result 4, Processing Time 0.016 seconds

Improving Recall for Context-Sensitive Spelling Correction Rules using Conditional Probability Model with Dynamic Window Sizes (동적 윈도우를 갖는 조건부확률 모델을 이용한 한국어 문맥의존 철자오류 교정 규칙의 재현율 향상)

  • Choi, Hyunsoo;Kwon, Hyukchul;Yoon, Aesun
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.629-636
    • /
    • 2015
  • The types of errors corrected by a Korean spelling and grammar checker can be classified into isolated-term spelling errors and context-sensitive spelling errors (CSSE). CSSEs are difficult to detect and to correct, since they are correct words when examined alone. Thus, they can be corrected only by considering the semantic and syntactic relations to their context. CSSEs, which are frequently made even by expert wiriters, significantly affect the reliability of spelling and grammar checkers. An existing Korean spelling and grammar checker developed by P University (KSGC 4.5) adopts hand-made correction rules for correcting CSSEs. The KSGC 4.5 is designed to obtain very high precision, which results in an extremely low recall. Our overall goal of previous works was to improve the recall without considerably lowering the precision, by generalizing CSSE correction rules that mainly depend on linguistic knowledge. A variety of rule-based methods has been proposed in previous works, and the best performance showed 95.19% of average precision and 37.56% of recall. This study thus proposes a statistics based method using a conditional probability model with dynamic window sizes. in order to further improve the recall. The proposed method obtained 97.23% of average precision and 50.50% of recall.

Improving Recall for Context-Sensitive Spelling Correction Rules Through Integrated Constraint Loosening Method (통합적 제약완화 방식을 통한 한국어 문맥의존 철자오류 교정규칙의 재현율 향상)

  • Choi, Hyunsoo;Yoon, Aesun;Kwon, Hyukchul
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.6
    • /
    • pp.412-417
    • /
    • 2015
  • Context-sensitive spelling errors (CSSE) are hard to correct, since they are perfect words when analyzed alone. Determined only by considering the semantic and syntactic relations of their context, CSSEs affect largely the performance of spelling and grammar checkers. The existing Korean Spelling and Grammar Checker (KSGC 4.5) adopts a rule-based method, which uses hand-made correction rules for CSSEs. Using rule-based method, the KSGC 4.5 is designed to obtain the very high precision, which results in the extremely low recall. In this paper, we integrate our previous works that control the CSSE correction rules, in order to improve the recall without sacrificing the precision. In addition to the integration, facultative insertion of adverbs and conjugation suffix of predicates are also considered, as for constraint-loosening linguistic features.

An English Essay Scoring System Based on Grammaticality and Lexical Cohesion (문법성과 어휘 응집성 기반의 영어 작문 평가 시스템)

  • Kim, Dong-Sung;Kim, Sang-Chul;Chae, Hee-Rahk
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.3
    • /
    • pp.223-255
    • /
    • 2008
  • In this paper, we introduce an automatic system of scoring English essays. The system is comprised of three main components: a spelling checker, a grammar checker and a lexical cohesion checker. We have used such resources as WordNet, Link Grammar/parser and Roget's thesaurus for these components. The usefulness of an automatic scoring system depends on its reliability. To measure reliability, we compared the results of automatic scoring with those of manual scoring, on the basis of the Kappa statistics and the Multi-facet Rasch Model. The statistical data obtained from the comparison showed that the scoring system is as reliable as professional human graders. This system deals with textual units rather than sentential units and checks not only formal properties of a text but also its contents.

  • PDF

Context-sensitive Word Error Detection and Correction for Automatic Scoring System of English Writing (영작문 자동 채점 시스템을 위한 문맥 고려 단어 오류 검사기)

  • Choi, Yong Seok;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.1
    • /
    • pp.45-56
    • /
    • 2015
  • In this paper, we present a method that can detect context-sensitive word errors and generate correction candidates. Spelling error detection is one of the most widespread research topics, however, the approach proposed in this paper is adjusted for an automated English scoring system. A common strategy in context-sensitive word error detection is using a pre-defined confusion set to generate correction candidates. We automatically generate a confusion set in order to consider the characteristics of sentences written by second-language learners. We define a word error that cannot be detected by a conventional grammar checker because of part-of-speech ambiguity, and propose how to detect the error and generate correction candidates for this kind of error. An experiment is performed on the English writings composed by junior-high school students whose mother tongue is Korean. The f1 value of the proposed method is 70.48%, which shows that our method is promising comparing to the current-state-of-the art.