• Title/Summary/Keyword: Korean sea bass

Search Result 73, Processing Time 0.02 seconds

Prevention of vibriosis in sea bass, Dicentrarchus labrax using ginger nanoparticles and Saccharomyces cerevisiae

  • Korni, Fatma M.M.;Sleim, Al Shimaa A.;Abdellatief, Jehan I.;Abd-elaziz, Rehab A.
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.185-199
    • /
    • 2021
  • Vibriosis is an important septicemic bacterial disease that affects a variety of commercial fish species, including cultured Dicentrarchus labrax. Nanotechnology has become an important modern tool for fish diseases prevention. Furthermore, nanomaterials have the ability to prevent and treat fish diseases. The current study was aimed to identify the causative agent of massive mortality of D. labrax commercial farm in Alexandria, Egypt. Experimental infection and the median lethal dose (LD50) of pathogenic isolate were assessed. Also, the effect of ginger nanoparticles (GNPs) and Sacchromyces cerevisiae as feed additives for prevention of vibriosis in D. labrax was carried out. Similarly, the tissue immunstimulant genes, IL-1β and TLR2 were measured in the spleen of feeding groups. The clinical signs of naturally diseased D. labrax showed corneal opacity and paleness of gills with excessive mucous secretion. The post-mortem abnormalities were severe hemorrhage and adhesion of internal organs. After bacteriological isolation and identification, the causative agent of mortality in the current study was Vibrio alginolyticus. The LD50 of V. alginolyticus was 1.5×105.4 CFU/ml. The experimentally infected D. labrax showed ulceration, exophthalmia and skin hemorrhages. The post-mortem findings of the experimentally infected D. labrax revealed internal hemorrhage, spleen darkness and paleness of liver. There is no mortality and 100% RPS in groups fed GNPs then injected with V. alginolyticus, in those fed a combination of GNPs and S. cerevisiae and a group fed normal diet then injected with physiological saline (control negative), respectively. Contrarily, there was 10% mortality and 87.5 RPS in the group fed S. cerevisae then injected with V. alginolyticus. On the other hand, the control positive group showed 79% mortality. The spleen IL-1β and TLR2 immunostimulant genes were significantly increased in groups of fish fed GNNP, S. cerevisiae and a combination of GNPs and S. cerevisiae, respectively compared to control group. The highest stimulation of those immunostimulant genes was found in the group fed a combination of GNPs and S. cerevisiae, while fish fed S. cerevisiae had the lowest level. Dietary combination of GNPs and S. cerevisiae was shown to be efficient in preventing of vibriosis, with greatest stimulation of spleen IL-1β and TLR2 immunostimulant genes.

Monitoring of Pathogens in Cultured Fish of Korea for the Summer Period from 2000 to 2006 (2000년~2006년 하절기 양식어류의 병원체 감염현황)

  • Jung, Sung-Hee;Kim, Jin-Woo;Do, Jeong-Wan;Choi, Dong-Lim;Jee, Bo-Young;Seo, Jung-Seo;Park, Myoung-Ae;Cho, Mi-Young;Kim, Myoung-Sug;Choi, Hye-Sung;Kim, Yi-Cheong;Lee, Joo-Seok;Lee, Chang-Hoon;Bang, Jong-Deuk;Park, Mi-Seon
    • Journal of fish pathology
    • /
    • v.19 no.3
    • /
    • pp.207-214
    • /
    • 2006
  • Diagnostic monitoring in fish farms with land-based tanks and net cases was conducted in eastern, western, southern and Jeju island of Korea for the summer period from 2000 to 2006. Total 3,518-fish samples of marine and freshwater fishes in 25 fish species were tested for pathogens. Fish species tested were olive flounder (Paralichthys olivaceus), fleshy prawn (Fenneropenaeus chinensis Osbeck), black rockfish (Sebastes schlegeli), rock bream (Oplegnathus fasciatus), red sea bream (Pagrus major), black seabream (Acanthopagrus schlegeli), sea bass (Lateolabrax japinicus), gray mullet (Mugil cephalus), rainbow trout (Onchorhynchus mykiss) and others. The infection rates by bacterial pathogens in the years of 2000, 2001, 2002, 2003, 2004, 2005 and 2006 were 22.4%, 34.5%, 14.1%, 15.3%, 17.7%, 13.5% and 5%, respectively. The infection rates by parasitic pathogens were 20%, 33.8%, 12.4%, 14.1%, 9.2%, 10.5% and 10.7%, respectively. The infection rates by viral pathogens were 22.4%, 13.5%, 10.3%, 5.4%, 9.7%, 10.2% and 15.8%, respectively. The infection rates by mixed pathogens were 10.3%, 0%, 44.9%, 50.9%, 31.9%, 38.4% and 39.6%, respectively. The rates of mixed infections were very low until 2001. The rates were higher than those of singer infections from 2002 to 2006. During the diagnostic monitoring from 2000 to 2006, the main bacterial pathogens were Vibrio (41.2%) and Streptococcus (28.8%). The infection rate by protozoa (85.7%) mainly including Scuticociliates and Trichodina was highest. The infection rate by viral necrosis virus (VNNV, 42.2%) was the highest of the viral pathogens.

Development of Species-Specific PCR to Determine the Animal Raw Material (종 특이 프라이머를 이용한 동물성 식품원료의 진위 판별법 개발)

  • Kim, Kyu-Heon;Lee, Ho-Yeon;Kim, Yong-Sang;Kim, Mi-Ra;Jung, Yoo Kyung;Lee, Jae-Hwang;Chang, Hye-Sook;Park, Yong-Chjun;Kim, Sang Yub;Choi, Jang Duck;Jang, Young-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.347-355
    • /
    • 2014
  • In this study, the detection method was developed using molecular biological technique to distinguish authenticity of animal raw materials. The genes for distinction of species about animals targeted at Cytochrome c oxidase subunit I (COI), Cytochrome b (Cytb), and 16S ribosomal RNA (16S rRNA) genes in mitochondrial DNA. The species-specific primers were designed by that Polymerase Chain Reaction (PCR) product size was around 200 bp for applying to processed products. The target 24 raw materials were 2 species of domestic animals, 6 species of poultry, 2 species of freshwater fishes, 13 species of marine fishes and 1 species of crustaceans. The results of PCR for Rabbit, Fox, Pheasant, Domestic Pigeon, Rufous Turtle Dove, Quail, Tree Sparrow, Barn Swallow, Catfish, Mandarin Fish, Flying Fish, Mallotus villosus, Pacific Herring, Sand Lance, Japanese Anchovy, Small Yellow Croaker, Halibut, Jacopever, Skate Ray, Ray, File Fish, Sea Bass, Sea Urchin, and Lobster raw materials were confirmed 113 bp ~ 218 bp, respectively. Also, non-specific PCR products were not detected in compare species by species-specific primers. The method using primers developed in this study may be applied to distinguish an authenticity of food materials included animal raw materials for various processed products.