• Title/Summary/Keyword: Korean reservoir

Search Result 2,700, Processing Time 0.028 seconds

Prediction of Water Quality improvement for Estuarine Reservoir using Wetland-Detention Pond System (습지-저류지에 의한 하구 담수호 수질개선 효과 예측)

  • 윤춘경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.94-102
    • /
    • 2000
  • Investigated was the effectiveness of a constructed wetland system on water quality in Hwa-Ong estruarin reservoir, located in Hwasung-Gun, Kyunggi-Do. Procedures for estimation of pollutant loading from watershed and required area for natural systems, and simulation of corresponding reservoir water quality were reviewed. Generally, simulated reservoir water quality was within the reasonable range, and about 15% of total polder farmland was required to meet the agricultural water quality standards. The model was applied based on the current loading condition without additional treatment systems. Wetland system is an ecologically sound treatment system. Therefore, natural systems can be an alternative measure for water quality improvement in polder projects. The area for natural systems was estimated using literature value which might be acceptable at the planning stage. However, pilot system and its experimental data are requisite for large scale field application. WASP5 was proved to be a useful and versatile model, and its application to estuarine reservoir water quality simulation was thought to be appropriate.

  • PDF

Modeling Sedimentation Process in Ipjang Reservoir using SWAT and EFDC (SWAT-EFDC 연계 모델링을 통한 입장저수지의 유사 해석)

  • Shin, Sat Byeol;Hwang, Soon-Ho;Her, Younggu;Song, Jung Hun;Kim, Hak Kwan;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.135-148
    • /
    • 2018
  • Reservoir sedimentation is a major environmental issue, and various sediment load controls and plans have been proposed to secure clean and safe water resources. The objectives of this study were to estimate soil loss in the upper basins and predict sediment deposition in Ipjang reservoir using hydrologic and hydraulic model. To do so, SWAT (Soil and Water Assessment Tool) and EFDC (Environmental Fluid Dynamics Code) was used to estimate soil loss in two upper basins and to predict spatial distribution and amount of sediment deposition in the Ipjang reservoir, respectively. The hydrologic modeling results showed that annual average soil loss from the upper basins was 500 ton. The hydraulic modeling results demonstrated that sediment particles transported to the reservoir were mostly trapped in the vicinity of the reservoir inlet and then moved toward the bank over time. If long-term water quality monitoring and sediment survey are performed, this study can be used as a tool for predicting the dredging amount, dredging location and proper dredging cycle in the reservoir. The study findings are expected to be used as a basis to establish management solutions for sediment reduction.

Formation of Sedimentation Pool within Irrigation Reserviors for Water Quality Improvement (저수지 수질개선을 위한 저수지 내 침전지 조성)

  • 박병흔
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.1
    • /
    • pp.73-82
    • /
    • 2000
  • Large quantitive of polllutants are washed into reservoirs during storm events. These polllutants contribute to eutrophication, such as algal blooms and fish kills. This study was conducted for the purpose of assessing the pollutant removal possibilities of sedimentation pool formed by deep dredging of a reservoir inlet. Water quality data were collected in the Masan reservoir, whose inlet has been dredged deep like sedimentation pool. The average concentration of chemical oxygen demand(COD) , toatal nitrogen(T-N) and total phosphrous(T-P) in the deep dredged area were 8.7 ~20.5mg/ι (T-N), 0.17~0.84mg/ι(T-P), which were 4.9%(COD), 29.0%(T-N) and 44.8%(T-P) higher than those of middle part of the reservior. The texture of sediment in the dredged area was silty loam, while that of the middle part was sandy clay loam. Organic matter contents, T-N and T-P of the bottom soil in the dredge area showed higher values than the middle part of the reservoirs. From these results, it was considered thedeep dredged area in the inlet of reservoir might play a key role to settle pollutant particulate. Based on the result of water quality analysis, deep dredging of the reservoir inlet could be assessed to reduce T-N and T-P of the reservoir about 6.5% , 8.3%, respectively. However, the effect of the sedimentation pool would be raised if the settled particles were taken into account in assessing water quality improvement for the reservoir. Accordingly, dredging of a reservoir inlet to make a shape of sedimentation pool is recommended for water quality improvement of reservoir in the stage of dredging plan.

  • PDF

Characteristics Analysis of Agricultural Reservoir Slope Vegetation for Judging the Leakage Zone (누수구역 판단을 위한 농업용 저수지 사면식생의 특성 분석)

  • Park, Seung Ki;Kim, Hyun Soo;Kim, Nam Ho;Lee, Jong Bo;Jung, Nam su
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.2
    • /
    • pp.87-96
    • /
    • 2017
  • This study is a basic research with the aim of developing the method of judging the leakage zone by grasping the habitat characteristic of agricultural reservoir slope in inhabiting characteristics appear differently according to natural inhabiting environment. To this end, this study is intending to investigate slope vegetation using a quadrat technique at Sinheung reservoir located at Gwangsi-myeon, Yesan-gun, Chungnam, and to perform the analysis of importance value using relative frequency and relative coverage, etc. Also, this study intended to present the necessity of having to consider the eco-system of the relevant region in time of a reservoir slope afforestation for the time to come by suggesting that the reservoir slope vegetation after a stable period becomes similar to the regional vegetation by comparing this study result with the existing research which carried out the analysis of importance value of forest vegetation for Yesan Region. The reservoir slope vegetation is similar to the indicator species which appear in the regional forest vegetation, so there was a need to select afforestation species in the light of this in time of slope afforestation. As a result of the analysis of the importance value, this study grasped that there was an emergence characteristic similar to the vegetation at a birthplace of a forest fires because growth and development of forest trees, and perennial plants were restricted by annually implemented brush-cutting work, etc.; however, indigo plant and bush clover, etc. were found to show the characteristic differing from this. Consequently, this study was able to confirm that there is the necessity of having to create the Importance Value Table suited for reservoir slopes by region through a lot more data construction in the near future.

The Influence Analysis for Soil Loss in Reservoir Slant using GIS-based Soil Loss Model (GIS기반 토사유실모델을 이용한 저수지 사면의 토사유실 영향 분석)

  • Lee, Geun-Sang;Park, Jin-Hyeog;Hwang, Eui-Ho;Koh, Deuk-Koo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.108-117
    • /
    • 2004
  • Soil particles from rainfall flow into reservoir and give lots of influence in water quality because the geological conditions and landcover characteristics of Imdong watershed have a weakness against soil loss. Especially, reservoir slant is indicated by the main source area of soil loss. This study selected RUSLE model that could apply GIS and satellite image to evaluate the contribution rate of soil loss in reservoir slant. And we carried out an on-the-spot survey for the range, width and condition of reservoir slant that give much influences to the accuracy of soil loss. As the result of evaluation to the influence of soil loss in reservoir slant, it showed 2.64% in comparison with Imdong watershed. In view of these results, the influence of soil loss in reservoir slant was evaluated in low comparing with Imdong watershed relatively.

  • PDF

Development of Evaluation Indices for Preservation Strategies for Agricultural Reservoir Watersheds (농업용 저수지 유역의 보전전략 수립을 위한 특성평가지표 개발)

  • Jang, Byoung-Kwan;Whang, Bo-Chul;Hwang, Kook-Woong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.6
    • /
    • pp.14-20
    • /
    • 2008
  • The agricultural reservoir watershed plan suggests three specific indices or ways to measure the potential for maintaining reservoir quality in balance with existing or proposed uses: an index of the reservoir's vulnerability to accelerated eutrophication, an index of the degree of land use intensity in reservoir watersheds, and an index of present water quality. Three items that contribute to reservoir eutrophication are included in the vulnerability index: the ratio of reservoir volume to drainage-basin area, shoreline configuration, and mean depth. The watershed land-use intensity index is based on road proximity and upland watershed land-use intensity. Water quality can be given a COD level. All six indicators are considered separately and then rated as follow: low (1), medium (2), or high (3). Five out of 30survey sites were less than 8points, 17sites were less than 11points and 8sites were less than 14points. This study suggests that the sites in the first ranking were potential areas for preservation, sites in the second ranking were potential areas for environmental friendly planning and sites in the third ranking were potential areas for residential need oriented planning. The advantage of this study is the low cost of gathering data for the development of local policy for the planning, management and protection of reservoir basin.

Characterization of Physical Properties of Turbid Flow in the Daecheong Reservoir Watershed dining Floods (홍수시 대청호 유역에 발생하는 탁수의 물리적 특성)

  • Chung, Se Woong;Lee, Heung Soo;Yoon, Sung Wan;Ye, Lyeong;Lee, Jun Ho;Choo, Chang Oh
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.934-944
    • /
    • 2007
  • Fine suspended solids (SS) induced into a reservoir after flood events play important ecological and water quality roles by presenting persistent turbidity and attenuating light. Thus the origin and physical features must be characterized to understand their transport processes and associated impacts, and for the establishment of watershed based prevention strategies. This study was aimed to characterize the physical properties of the SS sampled from Daecheong Reservoir and its upstream rivers during flood events. Extensive field and laboratory experiments were carried out to identify the turbidity-SS relationships, particle size distributions, settling velocity, and mineral compositions of the SS. Results showed that the turbidity-SS relationships are site-specific depending on the locations and flood events in the system. The turbidity measured within the reservoir was much greater than that measured in the upstream rivers for the same SS value. The effective diameters ($D_{50}$) in the rivers were in the range of $13.3{\sim}54.3{\mu}m$, while those in the reservoir were reduced to $2.5{\sim}14.0{\mu}m$ due to a fast settling of large particles in the rivers. The major minerals consisting of the SS were found to be Illite, Muscovite, Albite, and Quartz both in the rivers and reservoir. Their apparent settling velocities at various locations in the reservoir were in the range of 0.06~0.13 m/day. The research outcome provides a fundamental information for the fine suspended particles that cause persistent turbidity in the reservoir, and can be used as basic parameters for modeling study to search watershed based optimal control measures.

Phosphorus Budget of a River Reservoir, Paldang (하천형 호수인 팔당호의 인 수지)

  • Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.270-284
    • /
    • 2018
  • Paldang is a river reservoir located in the Midwest of Korea, with a water volume of $244{\cdot}10^6m^3$ and a water surface area of $36.5km^2$. It has eutrophied since the construction of a dam at the end of 1973, and the phosphorus concentration has decreased since 2001. Average hydraulic residence time of the Paldang reservoir is about 10 days during the spring season and 5.6 days as an annual level. The hydraulics and water quality of the reservoir can differ greatly, both temporally and spatially. For the spring period (March to May) in 2001 ~ 2017, the reservoir mean total phosphorus concentration calculated from the budget model based on a plug-flow system (PF) and a continuous stirred-tank reaction system (CSTR) was 13 % higher and 10 % lower than the observed concentration, respectively. A composite flow system (CF) was devised by assuming that the transition zone was plug flow, and that the lacustrine zone was completely mixed. The mean concentration calculated from the model based on CF was not skewed from the observed concentration, and showed just 6 % error. The retention coefficient of the phosphorus derived from the CF was 0.30, which was less than those of the natural lakes abroad or river reservoirs in Korea. The apparent settling velocity of total phosphorus was estimated to be $93m\;yr^{-1}$, which was 6 ~ 9 times higher than those of foreign natural lakes. Assuming CF, the critical load line for the total phosphorus concentration showed a hyperbolic relation to the hydraulic load in the Paldang reservoir. This is different from the previously known straight critical load line. The trophic state of the Paldang reservoir has recently been estimated to be mesotrophic based on the critical-load curve of the phosphorus budget model developed in this study. Although there is no theoretical error in the newly developed budget model, it is necessary to verify the validity of the portion below the inflection point of the critical-load curve afterwards.

Water Quality in Artificial Reservoirs and Its Relations to Dominant Reservoir Fishes

  • Hwang, Yoon;Han, Jeong-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.441-451
    • /
    • 2009
  • The major objectives of this study were to evaluate trophic state of reservoirs using major water quality variables and its relations in terms of trophic guilds and tolerance guilds with dominant lentic fishes. For this study, we selected 6 artificial reservoirs such as Namyang Reservoir ($N_yR$), Youngsan Reservoir ($Y_sR$), Daechung Reservoir ($D_cR$), Chungju Reservoir ($Cj_R$), Chungpyung Reservoir ($C_pR$), and Paldang Reservoir ($P_dR$), and collected fish during 2000~2007 along with data analysis of water quality monitored by the ministry of environment, Korea. Biological oxygen demand (BOD) and chemical oxygen demand (COD), indicators of organic matter pollution, varied depending on types of the reservoirs and the spatial patterns in terms of trophic gradients were similar to patterns of nutrients, Secchi depth and chlorophyll-a. Analysis of trophic state index (TSI) showed that reservoirs of $D_cR$ and $C_jR$ were mesotrophy and other 4 reservoirs were eutrophic state. The relations of trophic relations showedthat TSI (Chl-a) had a positive linear function [TSI (CHL)=0.407 TSI (TP)+28.2, n=138, p<0.05] with TSI (TP) but had a weak relation with TSI (TN). Also, TSI (TP) were negatively correlated ($R^2=0.703$, p<0.05) with TSI (SD), whereas TSI (TN) was not significant (p>0.05) relations with TSI (SD). Tolerance guilds of lentic fishes, based on three types of the reservoirs, reflected the exactly water quality in the TN, TP, BOD, and COD, and similar trends were shown in the fish feeding/trophic guilds.

Two-Dimensional Hydrodynamic and Water Quality Simulations for a Coinjunctive System of Daecheong Reservoir and Its Downstream (대청호와 하류하천 연속시스템의 2차원 수리·모의)

  • Jung, Yong Rak;Chung, Se Woong;Ryu, In Gu;Choi, Jung Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.581-591
    • /
    • 2008
  • Most of our rivers are fragmented by the presence of at least one large dam. Dams are often the most substantial controller of the flow regimes and aquatic environments of natural river system. The quality of downstream water released from a stratified reservoir is highly dependent on upstream reservoir water quality. Thus, an integrated modeling approach is more efficient, compared to fragmented modeling approach, and necessary to better interpret the impact of dam operation on the down stream water quality. The objectives of this study were to develop an integrated reservoir-river modeling system for Daecheong Reservoir and its downstream using a two-dimensional laterally averaged hydrodynamic and water quality model, and evaluate the model's performance against field measurement data. The integrated model was calibrated and verified using filed data obtained in 2004 and 2006. The model showed satisfactory performance in predicting temporal variations of water stage, temperature, and suspended solid concentration. In addition, the reservoir-river model showed efficient computation time as it took only 3 hours for one year simulation using personal computer (1.88 Ghz, 1.00 GB RAM). The suggested modeling system can be effectively used for assisting integrated management of reservoir and river water quality.