• Title/Summary/Keyword: Korean population

Search Result 16,134, Processing Time 0.047 seconds

Genetic Distances between Two Cultured Penaeid Shrimp (Penaeus chinensis) Populations Determined by PCR Analysis

  • Yoon, Jong-Man
    • Development and Reproduction
    • /
    • v.23 no.2
    • /
    • pp.193-198
    • /
    • 2019
  • Genomic DNA samples were obtained from cultured penaeid shrimp (Penaeus chinensis) individuals such as fresh shrimp population (FSP) and deceased shrimp population (DSP) from Shinan regions in the Korean peninsula. In this study, 233 loci were identified in the FSP shrimp population and 162 in the DSP shrimp population: 33 specific loci (14.2%) in the FSP shrimp population and 42 (25.9%) in the DSP population. A total of 66 (an average of 9.4 per primer) were observed in DSP shrimp population, whereas 55 unique loci to each population (an average of 7.9 per primer) in the FSP shrimp population. The Hierarchical dendrogram extended by the seven oligonucleotides primers indicates three genetic clusters: cluster 1 (FRESH 01, 02, and DECEASED 12, 13, 15, 16, 17, 19, 20, 22) and cluster 2 (FRESH 03, 04, 05, 06, 07, 08, 09, 10, 11, and DECEASED 14, 18, 21). Among the twenty-two shrimp, the shortest genetic distance that exposed significant molecular differences was between individuals 20 and 16 from the DSP shrimp population (genetic distance=0.071), while the longest genetic distance among the twenty-two individuals that established significant molecular differences was between individuals FRESH no. 02 and FRESH no. 04 (genetic distance=0.477). In due course, PCR analysis has revealed the significant genetic distance among two penaeid shrimp populations.

Extent of linkage disequilibrium and effective population size of the Landrace population in Korea

  • Shin, Donghyun;Kim, Sung-Hoon;Park, Joowan;Lee, Hak-Kyo;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1078-1087
    • /
    • 2018
  • Objective: The genetic diversity of the Landrace population, a representative maternal pig breed in Korea, is important for genetic improvement. Previously, the effective population size (Ne) has been used to infer the genetic diversity of a population of interest. In this study, we aimed to use single nucleotide polymorphism (SNP) data to characterize linkage disequilibrium (LD) and the Ne of the Korean Landrace population. Methods: We genotyped 1,128 Landrace individuals from three representative Korean major grand-grand-parent (GGP) farms using the Illumina PorcineSNP60 version2 BeadChip, which covers >61,565 SNPs located across all autosomes and mitochondrial and sex chromosomes. We estimated the expected LD and current Ne, as well as ancestral Ne. Results: In the Korean Landrace population, the mean LD ($r^2$) of 3.698 million SNP pairs was $0.135{\pm}0.204$. The mean $r^2$ decreased slowly with as the distance between SNPs increased, and remained constant beyond 3 Mb. According to the $r^2$ calculations, 8,085 of 3.698 million SNP pairs were in complete LD. The current Ne (${\pm}$standard deviation) of the Korean Landrace population is approximately 92.27 [79.46; 105.07] individuals. The ancestral Ne exhibited a slow and steady decline from 186.61 to 92.27 over the past 100 generations. Additionally, we observed more a rapid Ne decrease from the past 20 to 10 generations ago, compared with other intervals. Conclusion: We have presented an overview of LD and the current and ancestral Ne values in the Korean Landrace population. The mean LD and current Ne for the Korean Landrace population confirm the genetic diversity and reflect the history of this pig population in Korea.

The re-projections under 7 age on Korean registered population and a comparison with the reported population statistical data (주민등록 0세-6세 인구의 역 추정과 기존 인구통계와의 출생아수 비교)

  • Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1145-1153
    • /
    • 2009
  • The problem of Korean registered population is that population classified by age increases as one grows older until 6 age or 7 age. This paper is to suggest an algorithm of the re-projection under 7 age on Korean registered population and to analysis of comparison with the reported population statistical data. As the result, the reprojections population is trusted in the number of 0 age on the comparison of other reported population statistical data.

  • PDF

Microsatellite Markers for Non-Invasive Examination of Individual Identity, Genetic Variation, and Population Differentiation in Two Populations of Korean Long-Tailed Goral (Naemorhedus caudatus)

  • Kim, Baek-Jun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.4
    • /
    • pp.191-198
    • /
    • 2022
  • Natural habitats of the Korean long-tailed goral (Naemorhedus caudatus) have been fragmented by anthropogenic activities in South Korea in the last decades. Here, the individual identity, genetic variation, and population differentiation of the endangered species were examined via the multiple-tube approach using a non-invasive genotyping method. The average number of alleles was 3.16 alleles/locus for the total population. The Yanggu population (1.66) showed relatively lower average number of alleles than the Inje population (3.67). Of the total 19 alleles, only seven (36.8%) alleles were shared by the two populations. Using five polymorphic out of six loci, four and six different goral individuals from the captive Yanggu (n=24) and the wild Inje (n=28) population were identified, respectively. The allele distribution was not identical between the two populations (Fisher's exact test: P<0.01). A considerably low migration rate was detected between the two populations (no. of migrants after correction for size=0.294). Additionally, the F statistics results indicated significant population differentiation between them, however, quite low (FST=0.327, P<0.01). The posterior probabilities indicated that the two populations originated from a single panmictic population (P=0.959) and the assignment test results designated all individuals to both populations with nearly equal likelihood. These could be resulted from moderate population differentiation between the populations. No significant evidence supported recent population bottleneck in the total Korean goral population. This study could provide us with useful population genetic information for conservation and management of the endangered species.

Effect of an unsampled population on the estimation of a population size (집단 크기 추정에 대한 미표본 집단의 영향)

  • Chung, Yujin
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.347-355
    • /
    • 2020
  • An Isolation-with-Migration (IM) model is used to estimate extant population sizes, the splitting time of populations split away from their common ancestral populations, and migration rates between the extant populations. An evolutionary model such as IM models is estimated by analyzing DNA sequences sampled from the extant populations in the model. When a true model includes an unsampled 'ghost' population without data, the unsampled population is often ignored from the evolutionary model to infer. In this paper, we conduct a simulation study to investigate the effect of an unsampled population on the estimation of the size of the sampled population. When there exists an unsampled population that shares migrations with the sampled population, the size estimation of the sampled population was biased. However, the size estimation was improved if an evolutionary model, including the unsampled population, was estimated.

Development and Application of Village Extinction Index in Rural Areas - A Case Study on Chungcheongnam-do - (농촌의 마을소멸지수 개발 및 적용 - 충청남도를 대상으로 -)

  • Yun, Jeong-mi;Cho, Young-jae;Kim, Jin-young
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.3
    • /
    • pp.15-24
    • /
    • 2023
  • The sense of crisis regarding regional extinction due to low birth rates and an aging population is expanding. Generally, the local extinction index is used to analyze local extinction. However, it is challenging to diagnose the actual situation of village extinction risk in rural areas, even though the regional extinction index can be analyzed in units such as Si-Gun-Gu and Eup-Myeon-Dong. This difficulty arises because the regional extinction index solely relies on natural population growth indicators (elderly population and female population aged 20-39). Therefore, the purpose of this study is to develop a village extinction index that can identify the disappearance of rural villages. Additionally, the aim is to apply the developed indicators to the village (administrative ri) spatial unit. The existing regional extinction index used only mortality-related indicators as factors for natural population decline and fertility-related indicators as factors for natural population growth. However, the developed village extinction index included not only the factors of natural population change but also incorporated social population growth factors and factors related to the pace of village extinction. This is the key difference between the developed village extinction index and the existing regional extinction index. In this study, the indicators of "total population," "number of young women aged 20-44," "number of elderly population aged 70 or older," and "number of incoming population" were selected to develop a village extinction index. The village extinction index was developed by incorporating both natural population growth indicators and social population growth indicators. The developed village extinction index was applied to administrative villages. This research is expected to provide a more accurate understanding of the current state of rural villages facing extinction.

Intra-Urban Growth and Spatial Patterns in variation of Poupulation Density-The case of Seoul- (인구밀도의 변화로 본 도시내부의 성장과 공간패턴 - 서울의 예)

  • 이진환
    • Journal of the Korean Geographical Society
    • /
    • v.38
    • /
    • pp.61-74
    • /
    • 1988
  • Changing patterns of population densities in urban centers are different between Western countries and non-Western countries. Although Seoul is located in a non-Western country, the result of this study shows that its pattern of population density falls into the category of Western cities. Through the examination of three population density gradient models, it is clear that no model can precisely explain the population distribution of Seoul over time. Some of the models partly indicate the actual population distrisbution. The Clark model is appropriate to denote population distribution in the center of Seoul at an early stage in development. The Sherratt model cannot adequately explain the population distribution of Seoul.

  • PDF

Population-related factors affecting the regional distribution of medical institutions in Korea (지역별 요양기관의 분포에 영향을 미치는 인구관련 요인)

  • Lee, Sunkyoung;Cho, Eunseong;Yoon, Seok-Jun
    • Korea Journal of Hospital Management
    • /
    • v.18 no.2
    • /
    • pp.15-32
    • /
    • 2013
  • Few public health researchers have paid research attention to the location of medical institutions in Korea. Previous studies were published in geography journals, and relied on limited data in terms of geographic regions and the type of medical institutions. This study utilized nationwide data covering 8 types of medical institutions. We obtained data from Health Insurance Review and Assessment Service and National Population and Housing Census. The correlation coefficients of resident, daytime, university-graduate population, and the population of different age groups (fewer than 15, 15~64, 65 or more) were compared to understand their relative association with the location of medical institutions. Medical clinic, dental clinic, oriental medical clinic, and pharmacy, all of which are almost completely operated by private sector, showed strong positive correlation with population. Hospital-level medical institutions, which are operated by both public and private sector, had moderate positive correlation. Daytime population and university-graduate population, rather than resident population, were more correlated with the location of medical clinics. The correlation coefficients of the population of 15~64 age group and the location of medical institutions were greater than that of other age groups. The results showed that daytime and university-graduate population are more important than resident population to explain the location of medicalrelated facilities. The results also suggests that the population of age groups (especially, 15~64) might be one of important influence factors in the location of medical institutions.

  • PDF

New polymorphic microsatellite markers in the Korean mi-iuy croaker, $Miichthys$ $miiuy$, and their application to the genetic characterization of wild and farmed populations

  • An, Hye-Suck;Kim, Eun-Mi;Lee, Jang-Wook;Kim, Dae-Jung;Kim, Yi-Cheong
    • Animal cells and systems
    • /
    • v.16 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • Eighteen new polymorphic microsatellite markers were developed for the Korean mi-iuy croaker ($Miichthys$ $miiuy$, Perciformes, Sciaenidae), and allelic variability was compared between a wild population in Mokpo, Korea, and a hatchery population in Tongyeong, Korea. All loci were amplified readily and demonstrated allelic variability, with the number of alleles ranging from 5 to 37 in the wild population, and from 4 to 12 in the farmed population. The average observed and expected heterozygosities were estimated, respectively, to be 0.74 and 0.78 in the hatchery population samples, and 0.79 and 0.86 in the wild samples. These results indicate lower genetic variability in the hatchery population compared with the wild population, and significant genetic differentiation between the wild population and the hatchery samples ($F_{ST}$=0.058, P<0.001). These microsatellite loci may be valuable for future population genetic studies, monitoring changes in the genetic variation within stocks in a commercial breeding program, conservation genetics, and molecular assisted selective breeding of the mi-iuy croaker in the future.

Spatial Distribution of Aging District in Taejeon Metropolitan City (대전광역시 노령화 지구의 공간적 분포 패턴)

  • Jeong, Hwan-Yeong;Ko, Sang-Im
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.2
    • /
    • pp.1-19
    • /
    • 2000
  • This study is to investigate and analyze regional patterns of aging in Taejeon Metropolitan city-the overpopulated area of Choong-Cheong Province-by cohort analysis method. According to the population structure transition caused by rapid social and economic changes, Korea has made a rapid progress in population aging since 1970. This trend is so rapid that we should prepare for and cope with aging society. It is not only slow to cope with it in our society, but also there are few studies on population aging of the geographical field in Korea. The data of this study are the reports of Population and Housing Censuses in 1975 and 1985 and General Population and Housing Censuses with 10% sample survey in 1995 taken by National Statistical Office. The research method is to sample as the aging district the area with high aged population rate where the populations over 60 reside among total population during the years of 1975, 1985, 1995 and to sample the special districts of decreasing population where the population decreases very much and the special districts of increasing population in which the population increases greatly, presuming that the reason why aged population rate increases is that non-elderly population high in mobility moves out. It is then verified and ascertained whether it is true or not with cohort analysis method by age. Finally regional patterns in the city are found through the classification and modeling by type based on the aging district, the special districts of decreasing population, and the special districts of increasing population. The characteristics of the regional patterns show that there is social population transition and that non-elderly population moves out. The aging district with the high aged population rate is divided into high-level keeping-up type, relative falling type below the average of Taejeon city in aging progress, and relative rising type above the average of the city. This district can be found at both the central area of the city and the suburbs because Taejeon city has the characteristic of over-bounded city. But it cannot be found at the new built-up area with the in-migration of large population. The special districts of decreasing population where the population continues to decrease can be said to be the population doughnuts found at the CBD and its neighboring inner area. On the other hand, the special districts of increasing population where the population continues to increase are located at the new built-up area of the northern part in Taejeon city. The special districts of decreasing population are overlapping with the aging district and higher in aged population rate by the out-migration of non-elderly population. The special districts of increasing population are not overlapping with the aging district and lower in aged population rate by the in-migration of non-elderly population. To clarify the distribution map of the aging district, the special districts of decreasing and increasing population and the aging district are divided into four groups such as the special districts of decreasing population group-the same one as the aging district, the special districts of decreasing population group, the special districts of increasing population group, and the other district. With the cohort analysis method by age used to investigate the definite increase and decrease of aging population through population transition of each group, it is found that the progress of population aging is closely related to the social population fluctuation, especially that aged population rate is higher with the out-migration of non-elderly population. This is to explain each model of CBD, inner area, and the suburbs after modeling the aging district, the special districts of decreasing population, and the special districts of increasing population in Taejeon city. On the assumption that the city area is a concentric circle, it is possible to divide it into three areas such as CBD(A), the inner area(B), and the suburbs(C). The special districts of increasing and decreasing population in the city are divided into three districts-the special districts of decreasing population(a), the special districts of increasing population(b), and the others(c). The aging district of this city is divided into the aging district($\alpha$) and the others($\beta$). And then modeling these districts, it is probable to find regional patterns in the city. $Aa{\alpha}$ and $Ac{\beta}$ patterns are found in the CBD, in which $Aa{\alpha}$ is the special district of decreasing population and is higher in aged population rate because of aged population low in mobility staying behind and out-migration of non-elderly population. $Ba{\alpha}$, $Ba{\beta}$, $Bb{\beta}$, and $Bc{\beta}$ patterns are found in the inner area, in which neighboring area $Ba{\alpha}$ pattern is located. $Bb{\beta}$ pattern is located at the new developing area of newly built apartment complex. $Cb{\beta}$, $Cc{\alpha}$, and $Cc{\beta}$ patterns are found in the suburbs, among which $Cc{\alpha}$ pattern is highest in population aging. It is likely that the $Cc{\beta}$ under housing land readjustment on a large scale will be the $Cb{\beta}$ pattern. As analyzed above, marriage and out-migration of new family, non-elderly population, with house purchase are main factors in accelerating population aging in the central area of the city. Population aging is responsible for the great increase of aged population with longer life expectancy by the low death rate, the out-migration of non-elderly population, and the age group of new aged population in the suburbs. It is necessary to investigate and analyze the regional patterns of population aging at the time when population problems caused by aging as well as longer life expectancy are now on the increase. I hope that this will help the future study on population aging of the geographical field in Korea. As in the future population aging will be a major problem in our society, local autonomy should make a plan for the problem to the extent that population aging progresses by regional groups and inevitably prepare for it.

  • PDF