• Title/Summary/Keyword: Korean liquid

Search Result 17,370, Processing Time 0.039 seconds

INFLUENCE OF THE EVAPORATOIN OF LIQUIDS OF DENTAL CEMENTS ON THE PROPERTIES OF HARDENED CEMENTS (치과용 시멘트 용액의 증발이 경화된 시멘트의 성질에 미치는 영향)

  • Kim, Hyang-Kyung;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.156-169
    • /
    • 1997
  • This study was designed to evaluate the influences of evaporation of liquid of dental cements by drying during long term using. Zinc phosphate cement, polycarboxylate cement, and glass ionomer cement were used, and evaluated the properties as follows; consistency, setting time, film thickness, solubility, and compressive strength according to the ADA specification. The specimens of control group were made by mixing the newly opened liquid using the powder-liquid ratio recommended by the manufacturer, and the specimens of ES groups were made by mixing the 10% evaporated liquid by drying with the powder-liquid ratio recommeded by the manufacturer, and the specimens of EM group were made by mixing the 10% evaporated liquid with the powder-liquid ratio modified for standard consistency. The following conclusions were drawn ; 1. The viscosity of mixture of all kinds of cements were increased by the evaporation of liquid, especially the viscosity of glass ionomer cement were influenced significantly. 2. The amount of liquid should be increased to get a standard consistency at the using of evaporated liquid of cement, the most significant increase of liquid amount was required on Ketac-Cem. 3. The setting times were increased at both cases of mixing of evaporated liquid with powder - liquid ratio recommended by manufacturer or modifided through consistency test. 4. At an experimental group of mixing of the evaporated liquid with powder-liquid ratio recommended by manufacturer, solubility was decreased and film thickness was increased. 5. By the result of evaporation of cement liquid, the compressive strength of polycarboxylate cement was increased slightly and it of glass ionomer cement was increased, however, by the increase of amount of liquid to be possible to manipulate the compressive strength were decreased.

  • PDF

Experimental study on the applicability of liquid air as the refrigerant in artificial ground freezing for subsea tunnels (해저터널을 위한 동결공법 냉매로서의 액화공기 적용성에 대한 실험적 연구)

  • Son, Young-Jin;Choi, Hyeungchul;Moon, Hung-Man;Choi, Hangseok;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.175-181
    • /
    • 2016
  • In this paper, the liquid air was selected as the refrigerant in artificial ground freezing to be used for rapid ground freezing and to reduce the risk of suffocation and the applicability of liquid air was verified. In order to evaluate the stability of the liquid air, the oxygen concentration of mixtures with liquid nitrogen and liquid oxygen was experimentally examined to meet the oxygen concentration criteria in the Occupational Safety and Health Act. In addition, the effects of the mixture ratio of liquid nitrogen and liquid oxygen, pressure and flow rate change in the storage vessel on the oxygen concentration in the liquid air were investigated. As a result, the ratio of liquid nitrogen and liquid oxygen 8: 2 was shown to meet the oxygen concentration standards. Pressure and flow rate change in the storage vessel did not have significant effects on the oxygen concentration in the liquid air.

A NUMERICAL ANALYSIS ON THE BEHAVIOR OF LIQUID FILM AROUND A CURVED EDGE (곡률이 있는 모서리 주변에서의 액막 거동에 대한 수치해석적 연구)

  • Lee, Geonkang;Hur, Nahmkeon;Son, Gihun
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.75-80
    • /
    • 2012
  • Due to the effect of surface tension, liquid film around a curved edge of solid surface moves from the corner to the flat surface. During this behavior of liquid film, film sagging phenomenon is easily occurred at the solid surface. Behavior of liquid film is determined with the effects of the properties of liquid film and the geometric factors of solid surface. In the present study, 2-D transient CFD simulations were conducted on the behavior of liquid film around a curved edge. The two-phase interfacial flow of liquid film was numerically investigated by using a VOF method in order to predict the film sagging around a curved edge. In the steady state of behavior of liquid film, the liquid film thickness of numerical result showed a good agreement with experimental data. After verifying the numerical results, the characteristics of behavior of liquid film were numerically analyzed with various properties of liquid film such as surface tension coefficient and viscosity. The effects of geometric factors on film sagging were also investigated to reduce the film sagging around a curved edge.

HYDROELASTIC VIBRATION ANALYSIS OF TWO FLEXIBLE RECTANGULAR PLATES PARTIALLY COUPLED WITH A LIQUID

  • Jeong, Kyeong-Hoon;Kim, Jong-Wook
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.335-346
    • /
    • 2009
  • This paper deals with a hydroelastic vibration analysis of two rectangular plates partially coupled with a liquid, which is bounded by two plates and two rigid side walls. The wet displacement of each plate is assumed to be a combination of the modal functions of a dry uniform beam with a clamped boundary condition. As the liquid is assumed to be an ideal liquid, the displacement potential satisfying the Laplace equation is determined so that the liquid boundary conditions can meet the requirements at the rigid surfaces and the free liquid surface. The wet dynamic modal functions of each plate are expanded by using the finite Fourier transform to obtain an appropriate form of the compatibility requirement along the contacting surfaces between the plates and the liquid. The liquid-coupled natural frequencies of the plates are derived by using the Rayleigh-Ritz method. Finite element analyses using commercial software are carried out to verify the proposed theory. It is observed that the theoretical method agrees excellently with the three-dimensional finite element analyses results. The effects of the liquid depth and the liquid thickness on the normalized natural frequencies are investigated to identify the dynamic characteristics of the liquid coupled system.

Optimization of liquid-liquid extraction conditions for paclitaxel separation from plant cell cultures (식물세포배양으로부터 Paclitaxel 분리를 위한 액-액 추출 조건의 최적화)

  • Kim, Jin-Hyun
    • KSBB Journal
    • /
    • v.24 no.2
    • /
    • pp.212-215
    • /
    • 2009
  • In this study, the process parameters of liquid-liquid extraction were optimized to obtain a high purity and yield of paclitaxel in a pre-purification step. The optimal solvent ratio (methylene chloride/concentrated methanol extract ratio), extraction times, mixing time, and standing time for liquid-liquid extraction were 0.28 (v/v), 3(times), 30 min, and 40 min, respectively. The polar impurities from the biomass extraction were efficiently removed by liquid-liquid extraction. The complete concentration of liquid-liquid extract by rotary evaporator was reliable enough to obtain a high purity and yield of paclitaxel for subsequent purification steps.

Optimum Design of a Liquid Film Thickness Measurement Device Using Electric Conductance for Impingement Liquid Film (충돌 액막 분석을 위한 전기전도 액막 두께 측정장치 최적설계)

  • Lee, Hyeongwon;Lee, Hyunchang;Kim, Taesung;Ahn, Kyubok;Yoon, Youngbin
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.386-391
    • /
    • 2018
  • To analyze the film cooling in a liquid rocket engine, it is necessary to understand the characteristics of the wall-impingement liquid film. We designed an optimal two-dimensional device for measuring the thickness of the liquid film thickness. This device quantitatively measures the liquid-film thickness distribution. In previous liquid-film thickness measuring devices, the liquid film was formed over the entire area of the sensor. However, its formation depended on injection conditions. To compensate for this, optimal resistors are selected. Additionally, saturation variations with partial saturation are analyzed. Furthermore, calibration using the enhanced plate method is conducted with improvements in spatial resolution. The device designed here can be used to analyze the properties of an impingement liquid film with a slit injector. This study can be used for film-cooling analysis in liquid rocket engines.

Advanced LC Development for LCD TV Application

  • Tarumi, Kazuaki;Klasen-Memmer, Melanie
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.757-761
    • /
    • 2004
  • Flat Panel Display (FPD) application of Television (TV) application is booming. Liquid Crystal Display (LCD) is forecasted to play a dominant role for TV application in next years. We review in this presentation LC material development for LCD TV application.

  • PDF

Liquid Crystal Materials and Technologies inside Modern Displays

  • Naemura, Shohei
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.277-282
    • /
    • 2003
  • Computational calculations are now successfully introduced to design liquid crystal molecules for uses in modern active-matrix displays. These material technologies are practically applied to develop novel compounds, enabling formulation of advanced liquid crystal mixtures together with a newly developed mixture purification method. Typical examples of these liquid crystal mixtures are introduced for modern displays in various applications.

  • PDF

Behavior of Liquid Nitrogen in the Cryogenic Storage Tank (초저온액화가스 저장탱크 내에서의 액화질소의 거동)

  • Park Byung Whee;Lee Hyun Chul;Park Doo Seon;Son Moo Ryong
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.37-48
    • /
    • 1998
  • A cryogenic liquid stored in the closed cryogenic tank has been studied at various liquid levels. The change of pressure, temperature, and liquid-vapor ratio in the tank depended on the liquid levels. The various phenomena were shown at different liquid levels as follows: (1) liquid level was increased with condensation of vapor: (2) liquid was vaporized in spite of liquid level going up for a certain initial period and then condensation of vapor occurred at higher pressure; (3) liquid was vaporized without liquid level change; (4) liquid was vaporized with liquid level decreasing. If the tank is full with cryogenic liquid, it is extremely dangerous because of soaring the pressure. Therefore the tank must be filled with $90\%$ liquid according to the safety rules. If the tank was filled with $0\%$ ullage, the pressure increment as high as 80bar during first 5 days. With $90\%$ liquid level, however, the pressure was increased as low as 1.5bar in the same period. No matter what the liquid level is, it is very dangerous if the tank is locked-up with filled cryogenic liquid for a long time.

  • PDF

An experimental study on mechanism for the disintegration of liquid film surface waves by a parallel air flow (평행공기류에 의한 액막류 표면파의 분열기구에 관한 실험적 연구)

  • 이규영;양옥용
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.81-90
    • /
    • 1992
  • This paper deals with an experimental study on the initial condition of liquid film surface waves disintegration and investigation on the behavior of liquid film surface waves formed by the high speed air flow on the solid plane surface. The authors conducted the qualitative and quantitative study to in vestigate the liquid film flow phenomena, the liquid film disintegration mechanism, and droplet formation process with breaking the liquid film surface wave. The newly devised transparent rectangular test section which has semi-two-dimensional flow at the center of the bottom was introduced to perform the experimental study, and it can generate the uniform thickness liquid film at the bottom. The strobo streak camera was used to obtain the instantaneously transformed photographs. The electronic measuring device was also used to measure the liquid film thickness variation in order to perform the easy and effective analysis of complex flow phenomena in the air-water cocurrent flow.

  • PDF