• Title/Summary/Keyword: Korean knots

Search Result 318, Processing Time 0.028 seconds

A study on the measurement of ice in the Arctic region (At Svalbard and Chukchi Sea on 2010 summer) (빙해역의 빙상환경 계측에 관한 연구 (2010년 여름 Svalbard와 Chukchi Sea 근해))

  • Kim, Hyun Soo
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.23-29
    • /
    • 2011
  • The measurement of ice properties such as thickness, strength are important to know the performance of the ice breaking vessel. The measuring equipment of ice properties and methods are summarized in this paper. The actual measured data are also described. The strength of ice at Svalbard area on April 2010 is much stronger than the Chukchi Sea on August 2010. The mean strength of Svalbard is about 500 kPa and one of Chukchi Sea is 250 kPa. The first sea trial in Arctic sea using Araon was carried out in the Chukchi Sea. The power and speed was also measured to check the ship performance in ice. The speed was measured from GPS(Global Positioning System) and engine power was recorded from DPS(Dynamic Positioning system) of Araon. The design target of Araon in level ice is 3 knots in 1m thickness and 630 kPa flexible strength but mean speed in Chuckchi sea is 3.98 knots when 6.6 MW engine power, 2.4m ice thickness and 250 kPa strength. This results comes from the difference of ice types and the weak flexible strength of ice but it will be a good information to know the performance of Araon in similar ice condition.

A Study on Determining the Priority of Supervising Mooring Line while 125K LNG Moss Type Discharging at Pyeong Taek Gas Terminal

  • Kim, Jong Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.278-286
    • /
    • 2019
  • The Port of Pyeong Taek is located on the west coast, meaning that the difference between the rise and fall of tide is great (flood tide 1.8 to 2.9 knots, ebb tide 1.6 to 2.9 knots). Due to mainly N~NW'ly strong winds & high waves during winter, navigating as well as loading & discharging vessels must focus on cargo handling. The strong tidal and wind forces in the Port of Pyeong Taek can push an LNG carrier away from its berth, which will end up causing forced disconnection between the vessel's cargo line and shore-side loading arm. The primary consequence of this disconnection will be LNG leakage, which will lead to tremendous physical damage to the hull and shore-side equipment. In this study, the 125K LNG Moss Type ship docked at No. 1 Pier of the Pyeong Taek is observed, and the tension of the mooring line during cargo handling is calculated using a combination of wind and waves to determine effective mooring line and mooring line priority management. As a result if the wind direction is $90^{\circ}$ to the left and right of the bow, it was found that line monitoring should be performed bearing special attention to the Fore Spring Line, Fore Breast Line, and Aft Spring Line.

Numerical Analysis on the Flow Field around Tiller Rotor for Soil Improvement in Coastal Fisheries (연안어장의 토질 개선을 위한 경운기 로터 주변의 유동장에 대한 수치해석)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.20-28
    • /
    • 2017
  • The steady-state, incompressible and three-dimensional numerical analysis was performed to investigate the flow fields around the seabed tiller used for soil improvement in coastal fisheries and the pulling force and buoyancy generated by tiller operation. The turbulence model used in this study is a realizable $k-{\varepsilon}$. As a results, at a stationary current or a current speed of 1.2 knots, where rotor rotates in a clockwise direction, a typical vortex pair appears near the tip of the rotor except for the edge, and the strength of the vortex pair increases with the number of revolutions of the rotor. The pulling force of the tiller rotating in the counterclockwise direction increases with the number of revolutions. Also, when the current flows at 1.2 knots and the rotor rotates clockwise, the pulling force of the tiller acts on the upstream side irrespective of the number of rotations of the rotor, so that no force is applied. The buoyancy of the tiller acts on the seawater surface if the flow direction inside the rotor is the same as the direction of rotation of the rotor, regardless of the current velocity, otherwise it acts on the seabed.

A Study on the Hull Form Development of the 25 Knots Class Planing Hull Form Fishing Boat (25노트급 활주형 어선의 기본선형 개발에 관한 연구)

  • LEE KWI-JOO;JOA SOON-WON;PARK MYUNG-KYU;SHIN YOUNG-KYUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.88-94
    • /
    • 2003
  • A series of tests of 5 model ships, selected from a data survey of 10 Gross Tonnage actual fishing boats, were performed in two circulating water channels (Chosun University in Korea and WJFEL in Japan), in order to develop the basic hull form of a 25 knots-class fishing boat. Resistance tests, trim and sinkage measurements and wave pattern observations etc., were included in each I1wdel test, and the model test results were compared and analyzed. The result was as follows: P-4 hull form ship changed into Deep V type bow is the best hull form with good performance, especially with regard to ship's resistance efficiency.

Numerical Analysis on Velocity Fields around Seabed Tiller for the Improvement of Seabed Soil (해저 토질 개선을 위한 해저경운기 주변의 속도장에 대한 수치해석)

  • Kim, Jang-Kweon;Oh, Seok-Hyung;Kim, Jong-Beom;Chung, Sang-Ok
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.48-56
    • /
    • 2017
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to evaluate the velocity fields around the seabed tiller used for the improvement of the seabed soil and the pulling force and buoyancy generated by driving the seabed tiller. The turbulence model used in this study is a realizable $k-{\varepsilon}$ well known to be excellent for predicting the performance of the flow separation and recirculation flow as well as the boundary layer with rotation and strong back pressure gradient. As a results, a typical vortex pair appears near the adjacent rotor vane tip. When the current is stopped, there is no force when pulling the seabed tiller, but when the current flows at 1.2 knots, the force acts on the downstream side and the pulling force is much greater. In stationary currents, the buoyancy of the seabed tiller acts more strongly towards the seabed as the number of rotations of the rotor increases, but acts more strongly toward the sea surface at 1.2 knots of current.

The Effects of Slow Steaming on the Liners' Operating Strategy

  • Woo, Jong-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.567-575
    • /
    • 2014
  • In recent times, an obvious strategy in liner shipping markets that has come to the fore is slow steaming. Nowadays, most liner shipping companies have decelerated the voyage speed to 15-18 knots on major routes, and some leading liner shipping companies have a plan to reduce it to below 15 knots. Slow steaming is helpful in reducing the operating cost and the amount of greenhouse-gas emissions on a single vessel with lower fuel consumption. However, it also creates various negative effects such as the opportunity cost, additional fixed costs and an in-transit inventory cost on a loop. Hence, the net operating cost on a loop is changing dynamically due to the changes of voyage speed based on various slow steaming effects. The aim of this study is to analyze the slow steaming effects in the liner shipping, and to find the best voyage speed that minimizes the operating cost on a loop. Moreover, this study suggests the recommendable strategy for liner shipping companies. To achieve the aim of this study, a simulation model has been designed using System Dynamics.

An Experimental Study on Hull Form Development and Anti-Rolling Tank Performance of G/T 360ton Class Fishery Patrol Ship (총톤수 360톤급 어업지도선의 선형개선 및 횡요감소장치 성능에 관한 실험적 연구)

  • Lee, Kwi-Joo;Joa, Soon-Won;Kim, Kyoung-Hwa
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.245-250
    • /
    • 2003
  • Hull form development and Anti-rolling tank of G/T 360ton class fishery patrol ship was carried out in the CWC at Chosun university, cooperatively with WJFEL(The West Japan Fluid Engineering Laboratory). Same size of 15 knots class fishery patrol ship was selected as a parent form(Model number: CU-015), and modified fore and after body hull form under the slightly lengthened to be suitable for the operation at 20 knots. This paper investigated for a rolling performance and an effective using method when fishery patrol ship was equipped with anti-rolling tank. On several occasions of rolling test was made reference to design data of a similar ship. Although the hull form was highly constrained in being limited to modification of a parent hull form, significant wave resistance improvement was made.

  • PDF

A Study on Decision of Minimum Required Channel Width Considering Ship Types by Fast Time Simulation (배속 시뮬레이션 기반의 선종별 최소 항로 폭에 관한 연구)

  • Kim, Hyun-suk;Lee, Yun-sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.309-316
    • /
    • 2020
  • Waterway design should prioritize appropriate channel width to ensure preferential safe passage for the arrival and departure of vessels. To calculate the minimum channel width required for safe passage a comprehensive review of several factors is required. These factors include vessel maneuverability, determined by vessel size, type and speed; environmental factors such as wind, tide, and wave action; human factors, including personal experience and operator judgment as well as marine traffic and navigation support facilities for decision making. However, the Korean channel width design standard is based only on vessel length, and requires improvement when compared with the standards of PIANC, USA, and Japan. This study aims to estimate the appropriate channel width required for one-way traffic in a straight channel, considering various vessel and environmental factors, using Fast Time Simulation (FTS). When the wind speed is 25 knots, with a current speed of 2 knots and a normal vessel speed of 10 knots FTS shows that a 150K GT Cruise Ship requires a minimum channel width of 0.67-0.91 the vessel length (L), whereas a 120K TEU Container Ship and a 300K DWT VLCC require 0.79-1.17 and 1.02-1.59, respectively. Such results can be used to calculate the minimum channel width required for safe passage as an improved Korean design standard.

A Smooth Estimation of Failure Rate Function (고장률 함수의 평활추정)

  • 나명환;이현우;김재주
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.3
    • /
    • pp.51-61
    • /
    • 1997
  • We introduce a method of estimating an unknown failure rate function based on sample data. We estimate failure rate function by a function s from a space of cubic splines constrained to be linear (or constant) in tails using maximum likelihood estimation. The number of knots are determined by Bayesian Information Criterion(BIC). Examples using simulated data are used to illustrate the performance of this method.

  • PDF

SPLINE HAZARD RATE ESTIMATION USING CENSORED DATA

  • Na, Myung Hwan
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.99-106
    • /
    • 1999
  • In this paper, the spline hazard rate model to the randomly censored data is introduced. The unknown hazard rate function is expressed as a linear combination of B-splines which is constrained to be linear(or constant) in tails. We determine the coefficients of the linear combination by maximizing the likelihood function. The number of knots are determined by Bayesian Information Criterion. Examples using simulated data are used to illustrate the performance of this method under presenting the random censoring.

  • PDF