• Title/Summary/Keyword: Korean heat waves

Search Result 235, Processing Time 0.022 seconds

Investigation of Operation and Improvement for Heat Watch Warning System to Provide Health-Weather Information (보건기상정보 제공을 위한 폭염특보 운영현황 및 개선방안 조사)

  • Hwang, Mi-Kyoung;Kang, Yoon-Hee;Kim, Sungmin;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.277-285
    • /
    • 2019
  • Heat watch warning systems are operating in Korea and several other countries (China, the United Kingdom, France, the United States, Germany, Australia, and Japan). The heat wave indices used in this system are the heat index, perceived temperature, the wet bulb globe temperature, and the daily maximum temperature. To improve the heat wave advisory and warning system, some suggestions have been made. The meteorological-health index (i.e., indirect index), has especially been proposed in previous studies. This information should be provided not only to vulnerable groups (seniors, infants, and children), but also to outdoor workers who may be particularly exposed to heat waves. In addition, to have sufficient preemptive response times, the need for an extension of the heat watch warning period was suggested. Finally, the subdivision of administrative units and risk stages was proposed.

An interpretable machine learning approach for forecasting personal heat strain considering the cumulative effect of heat exposure

  • Seo, Seungwon;Choi, Yujin;Koo, Choongwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.6
    • /
    • pp.81-90
    • /
    • 2023
  • Climate change has resulted in increased frequency and intensity of heat waves, which poses a significant threat to the health and safety of construction workers, particularly those engaged in labor-intensive and heat-stress vulnerable working environments. To address this challenge, this study aimed to propose an interpretable machine learning approach for forecasting personal heat strain by considering the cumulative effect of heat exposure as a situational variable, which has not been taken into account in the existing approach. As a result, the proposed model, which incorporated the cumulative working time along with environmental and personal variables, was found to have superior forecast performance and explanatory power. Specifically, the proposed Multi-Layer Perceptron (MLP) model achieved a Mean Absolute Error (MAE) of 0.034 (℃) and an R-squared of 99.3% (0.933). Feature importance analysis revealed that the cumulative working time, as a situational variable, had the most significant impact on personal heat strain. These findings highlight the importance of systematic management of personal heat strain at construction sites by comprehensively considering the cumulative working time as a situational variable as well as environmental and personal variables. This study provided a valuable contribution to the construction industry by offering a reliable and accurate heat strain forecasting model, enhancing the health and safety of construction workers.

Analysis of Unstable Shock-Induced Combustion over Wedges and Conical Bodies (쐐기 및 원추 주위의 불안정한 충격파 유도연소 해석)

  • Jeong-Yeol Choi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.32-33
    • /
    • 2003
  • Mechanism of a periodic oscillation of shock-induced combustion over a two- dimensional wedges and axi-symmetric cones were investigated through a series of numerical simulations at off-attaching condition of oblique detonation waves(ODW). A same computational domain over 40 degree half-angle was considered for two-dimensional and axi-symmetric shock-induced combustion phenomena. For two-dimensional shock-induced combustion, a 2H2+02+17N2 mixture was considered at Mach number was 5.85with initial temperature 292 K and initial pressureof 12 KPa. The Rankine-Hugoniot relation has solution of attached waves at this condition. For axi-symmetric shock-induced combustion, a H2+2O2+2Ar mixture was considered at Mach number was 5.0 with initial temperature 288 K and initial pressure of 200 mmHg. The flow conditions were based on the conditions of similar experiments and numerical studies.[1, 3]Numerical simulation was carried out with a compressible fluid dynamics code with a detailed hydrogen-oxygen combustion mechanism.[4, 5] A series of calculations were carried out by changing the fluid dynamic time scale. The length wedge is varied as a simplest way of changing the fluid dynamic time scale. Result reveals that there is a chemical kinetic limit of the detached overdriven detonation wave, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. At the off-attaching condition of ODW the shock and reaction waves still attach at a wedge as a periodically oscillating oblique shock-induced combustion, if the Rankine-Hugoniot limit of detachment isbut the chemical kinetic limit is not.Mechanism of the periodic oscillation is considered as interactions between shock and reaction waves coupled with chemical kinetic effects. There were various regimes of the periodicmotion depending on the fluid dynamic time scales. The difference between the two-dimensional and axi-symmetric simulations were distinct because the flow path is parallel and uniform behind the oblique shock waves, but is not behind the conical shock waves. The shock-induced combustion behind the conical shockwaves showed much more violent and irregular characteristics.From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

Characterization of Low-cycle Fatigue of Copper and Isothermal Aging of 2.25Cr Ferritic Steel by Ultrasonic Nonlinearity Parameter (초음파 비선형파라미터를 이용한 무산소동 저주기피로와 2.25Cr 페라이트강의 등온열화 평가)

  • Kim, Chungseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.5
    • /
    • pp.239-245
    • /
    • 2022
  • The purpose of this study is to evaluate the degree of microstructural change of materials using ultrasonic nonlinear parameters. For microstructure change, isothermal heat-treated ferritic 2.25Cr steel and low-cycle fatigue-damage copper alloy were prepared. The variation in ultrasonic nonlinearity was analyzed and evaluated through changes in hardness, ductile-brittle transition temperature, electron microscopy, and X-ray diffraction tests. Ultrasonic nonlinearity of 2.25Cr steel increased rapidly during the first 1,000 hours of deterioration and then gradually increased thereafter. The variation in non-linear parameters was shown to be coarsening of carbides and an increase in the volume fraction of stable M6C carbides during heat treatment. Due to the low-cycle fatigue deformation of oxygen-free copper, the dislocation that causes lattice deformation developed in the material, distorting the propagating ultrasonic waves, and causing an increase in the ultrasonic nonlinear parameters.

A Study on Estimating Heat Vulnerable Areas by Demographic Group based on Population Estimates (인구 추정을 기반으로 한 인구집단별 폭염 취약지역 분포 예측에 관한 연구)

  • Yu-Hyun Kim;Donghyun Kim
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.6
    • /
    • pp.277-292
    • /
    • 2024
  • In order to minimize the impact of future heat waves, this study predicts the spatial distribution of heat vulnerable areas by three demographic groups: young population, working-age population, and old population, prior to establishing heat wave adaptation strategies. First, the future population values of each demographic group were estimated through machine learning and explainable AI, and the estimates were interpreted. The population estimates showed that all three demographic groups are expected to continue to decline until 2042. The future heat wave vulnerable areas, derived by overlaying population estimates and future heat wave days by demographic group, were predicted to be mainly inland for all three demographic groups. The spatial distribution of future heat vulnerable areas by demographic group showed that the western part of the country is more vulnerable than the eastern part, and that the heat vulnerable areas for the young population will be located in Seoul, the southern part of the Seoul metropolitan area, and metropolitan areas, while the heat vulnerable areas for the working-age population will be located in Seoul, the southern part of the Seoul metropolitan area, and the Chungcheongbuk-do region. Accurate population estimation analysis is an essential step in proactively and effectively dealing with the effects of future heat waves, and the results of this study can be used as a basis for heat adaptation policies.

The Effect of Acoustic Fields Formed in Heat Transfer Process (음향장이 열전달 과정에 미치는 영향)

  • Yang, Ho-Dong;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1603-1608
    • /
    • 2003
  • The Present Study reported on the experimental and numerical results of heat transfer in the acoustic fields induced by ultrasonic waves. The strong upwards flow called as acoustic streaming was visualized by a particle image velocimetry (P.I.V). in addition, the augmentation of heat transfer was experimentally investigated in the presence of acoustic streaming and was compared with the profiles of acoustic pressure calculated by the numerical analysis. Experimental and numerical studies clearly show that acoustic pressure variations are closely related to the augmentation of heat transfer.

  • PDF

Mechanisms of Oblique Shock-Induced Combustion Instability

  • Choi, Jeong-Yeol;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • Instability of oblique detonation waves (ODW) at off-attaching condition was investigated through a series of numerical simulations. Two-dimensional wedge of finite length was considered in $H_2/O_2/N_2$ mixtures at superdetonative condition. Numerical simulation was carried out with a compressible fluid dynamics code and a detailed hydrogen-oxygen combustion mechanism. Present result reveals that there is a chemical kinetic limit of the ODW detachment, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. Result also presents that ODW still attaches at a wedge as an oblique shock-induced flame showing periodically unstable motion, if the Rankine-Hugoniot limit of detachment is satisfied but the chemical kinetic limit is not. Mechanism of the periodic instability is considered as interactions of shock and reaction waves coupled with chemical kinetic effects. From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of the Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

Inspection of Heat Exchanger Tubing Defects with Ultrasonic Guided Waves (유도초음파를 이용한 열 교환기 튜브 결함 탐상)

  • Shin, Hyeon-Jae;Rose, Joseph L.;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • This study shows the defect detection and sizing capability of ultrasonic guided waves in the nondestructive inspection of heat exchanger and steam generator tubing. Phase and group velocity dispersion curves for the longitudinal and flexural modes of a sample Inconel tube were presented for the theoretical analysis. EDM(Electric Discharge Machining) wears in tubing under a tube support plate and circumferential laser notches in tubing were detected by an axisymmetric and a non-axisymmetric transducer set up, respectively. EDM wears were detected with L(0, 2), L(0, 3) and L(0, 4) modes and among them L(0, 4) mode was found to be the most sensitive. It was also found that the flexural modes around L(0, 1) mode could be used for the detection and sizing of laser notches in the tubing.

  • PDF

Use of Guided Waves for Monitoring Material Conditions in Fossil-Fuel Power Plants (판파를 이용한 화력 발전 설비의 물성 평가)

  • Cho, Youn-Ho;Jung, Kyung-Sik;Lee, Jae-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.695-700
    • /
    • 2010
  • Material properties of the lock plate, which covers the gas-turbine blade, are studied using ultrasonic guided waves. The lock plate is a crucial part of a gas-turbine power plant. The wave velocity and attenuation coefficient are measured to investigate the changes in the material properties under three heat-treatment conditions. Compared to the destructive mechanical tests, the material characterization of Inconel X-750 can be performed more efficiently and nondestructively by using ultrasonic guided waves; this characterization helps identify the changes occurring in its elastic moduli and Poisson's ratio under different heat-treatment conditions. The wave velocity and hardness of Inconel X-750 are proportional to each other. This nondestructive technique for the measurement of material properties can be widely used in various industries to avoid catastrophic failure. It is also expected that the guided-wave technique can be applied as a new cost- and time-saving inspection tool for longer and wider inspection ranges.

Analysis of Temperature Variations in Groundwater in the Taegu Area (지하수온도 자료분석에 의한 대구지역 지하수 특성 연구)

  • 성익환
    • The Journal of Engineering Geology
    • /
    • v.3 no.3
    • /
    • pp.267-278
    • /
    • 1993
  • Ground-water temperature is one of the parameters for observing diarges in the state of the ground-water regime in time and space, which relate to conditions for recharge as well as the influence of various natural and man-induced fadors on the regime. Because ground-water satura tes much of the rock materiats in the upper layer of the earth's csust the water temperature reflects in part the temperature of the water-bearing rocks. The mobffity and thennal capadty of groud-waters, however, serves to redistribute some of the heat within the stratosphere and to influence the developement of the geothermal regime within this sphere. The utilization of temperature data of the study area(25 points) in the solution of hydrogeologic problems requires an understanding of some of the fundamental aspects of subsurtice temperatures. These include the depth of penetration of heat waves generated of the surtace, the rate of propagation of the waves, and the geothermal gradient in the study area of Taegu.

  • PDF