• Title/Summary/Keyword: Korean cosmology

Search Result 226, Processing Time 0.036 seconds

The Joint analysis of galaxy clustering and weak lensing from the Deep Lens Survey to constrain cosmology and baryonic feedback

  • Yoon, Mijin;Jee, M. James;Tyson, J. Tony
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.79.2-79.2
    • /
    • 2019
  • Based on three types of 2-point statistics (galaxy clustering, galaxy-galaxy lensing, and cosmic shear power spectra) from the Deep Lens Survey (DLS), we constrain cosmology and baryonic feedback. The DLS is a deep survey, so-called a precursor to LSST, reaching down to ~27th magnitude in BVRz' over 20 deg2. To measure the three power spectra, we choose two lens galaxy populations centered at z ~0.27 and 0.54 and two source galaxy populations centered at z ~0.64 and 1.1, with more than 1 million galaxies. We perform a number of consistency tests to confirm the reliability of the measurements. We calibrated photo-z estimation of the lens galaxies and validated the result with galaxy cross-correlation measurement. The B-mode signals, indicative of potential systematics, are found to be consistent with zero. The two cosmological results independently obtained from the cosmic shear and the galaxy clustering + galaxy-galaxy lensing measurements agree well with each other. Also, we verify that cosmological results between bright and faint sources are consistent. While there exist some weak lensing surveys showing a tension with Planck, the DLS constraint on S8 agrees nicely with the Planck result. Using the HMcode approach derived from the OWLS simulation, we constrain the strength of baryonic feedback. The DLS results hint at the possibility that the actual AGN feedback may be stronger than the one implemented in the current state-of-the-art simulations.

  • PDF

Cosmology with Type Ia Supernova gravitational lensing

  • Asorey, Jacobo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.52.2-52.2
    • /
    • 2019
  • In the last decades, the use of type Ia supernovae (SN) as standard candles has allowed us to understand the geometry of the Universe as they help to measure the expansion rate of the Universe, especially in combination with other cosmological probes such as the study of cosmic microwave background radiation anisotropies or the study of the imprint of baryonic acoustic oscillations on the galaxy clustering. Cosmological parameter constraints obtained with type Ia SN are mainly affected by intrinsic systematic errors. But there are other systematic effects related with the correlation of the observed brightness of Supernova and the large-scale structure of the Universe such as the effect of peculiar velocities and gravitational lensing. The former is relevant for SN at low redshifts while the latter starts being relevant for SN at higher redshifts. Gravitational lensing depends on how much matter is along the trajectory of each SN light beam. In order to account for this effect, we consider a statistical approach by defining the probability distribution (PDF) that a given supernova brightness is magnified by a given amount, for a particular redshift. We will show that different theoretical approaches to define the matter density along the light trajectory hugely affect the shape and width of the PDF. This may have catastrophic effects on cosmology fits using Supernova lensing as planned for surveys such as the Dark Energy Survey or future surveys such the Large Synoptic Survey Telescope.

  • PDF

Model-independent Constraints on Type Ia Supernova Light-curve Hyperparameters and Reconstructions of the Expansion History of the Universe

  • Koo, Hanwool;Shafieloo, Arman;Keeley, Ryan E.;L'Huillier, Benjamin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.48.4-49
    • /
    • 2020
  • We reconstruct the expansion history of the universe using type Ia supernovae (SN Ia) in a manner independent of any cosmological model assumptions. To do so, we implement a nonparametric iterative smoothing method on the Joint Light-curve Analysis (JLA) data while exploring the SN Ia light-curve hyperparameter space by Markov Chain Monte Carlo (MCMC) sampling. We test to see how the posteriors of these hyperparameters depend on cosmology, whether using different dark energy models or reconstructions shift these posteriors. Our constraints on the SN Ia light-curve hyperparameters from our model-independent analysis are very consistent with the constraints from using different parameterizations of the equation of state of dark energy, namely the flat ΛCDM cosmology, the Chevallier-Polarski-Linder model, and the Phenomenologically Emergent Dark Energy (PEDE) model. This implies that the distance moduli constructed from the JLA data are mostly independent of the cosmological models. We also studied that the possibility the light-curve parameters evolve with redshift and our results show consistency with no evolution. The reconstructed expansion history of the universe and dark energy properties also seem to be in good agreement with the expectations of the standard ΛCDM model. However, our results also indicate that the data still allow for considerable flexibility in the expansion history of the universe. This work is published in ApJ.

  • PDF

A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION WITH POLARBEAR

  • ADE, P.A.R.;AKIBA, Y.;ANTHONY, A.E.;ARNOLD, K.;ATLAS, M.;BARRON, D.;BOETTGER, D.;BORRILL, J.;CHAPMAN, S.;CHINONE, Y.;DOBBS, M.;ELLEFLOT, T.;ERRARD, J.;FABBIAN, G.;FENG, C.;FLANIGAN, D.;GILBERT, A.;GRAINGER, W.;HALVERSON, N.W.;HASEGAWA, M.;HATTORI, K.;HAZUMI, M.;HOLZAPFEL, W.L.;HORI, Y.;HOWARD, J.;HYLAND, P.;INOUE, Y.;JAEHNIG, G.C.;JAFFE, A.H.;KEATING, B.;KERMISH, Z.;KESKITALO, R.;KISNER, T.;JEUNE, M. LE;LEE, A.T.;LEITCH, E.M.;LINDER, E.;LUNGU, M.;MATSUDA, F.;MATSUMURA, T.;MENG, X.;MILLER, N.J.;MORII, H.;MOYERMAN, S.;MYERS, M.J.;NAVAROLI, M.;NISHINO, H.;ORLANDO, A.;PAAR, H.;PELOTON, J.;POLETTI, D.;QUEALY, E.;REBEIZ, G.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.625-628
    • /
    • 2015
  • POLARBEAR is a ground-based experiment located in the Atacama desert of northern Chile. The experiment is designed to measure the Cosmic Microwave Background B-mode polarization at several arcminute resolution. The CMB B-mode polarization on degree angular scales is a unique signature of primordial gravitational waves from cosmic inflation and B-mode signal on sub-degree scales is induced by the gravitational lensing from large-scale structure. Science observations began in early 2012 with an array of 1.274 polarization sensitive antenna-couple Transition Edge Sensor (TES) bolometers at 150 GHz. We published the first CMB-only measurement of the B-mode polarization on sub-degree scales induced by gravitational lensing in December 2013 followed by the first measurement of the B-mode power spectrum on those scales in March 2014. In this proceedings, we review the physics of CMB B-modes and then describe the Polarbear experiment, observations, and recent results.

General Relativity and Light Bending/Gravitational Lensing (일반상대성이론과 빛의 꺾임/중력렌즈)

  • Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.57.4-57.4
    • /
    • 2015
  • Light bending by gravity was the key prediction of general relativity. Solar eclipse expedition of 1919 provided the observational support for the theory of general relativity. Diverse gravitational lensing, i.e., light bending, phenomena have been speculated and predicted by general relativity and ultimately discovered many years later. Gravitationally lensed quasars, luminous arcs, weak lensing, and microlensing have provided invaluable information about the distribution of matter, especially of dark matter, and the cosmology. Gravitational lensing is one of the most spectacular manifestation of general relativity and will remain as an extremely useful astrophysical tools in the future.

  • PDF

FUTURE SPACE INFRARED TELESCOPE MISSION, SPICA

  • MATSUMOTO TOSHIO
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.89-91
    • /
    • 2005
  • SPICA (Space Infrared Telescope for Cosmology and Astrophysics) is an infrared astronomical satellite with a 3.5 m cooled telescope which is very powerful in mid- and far- infrared observations and makes complementary role to JWST and Herschel. SPICA will be launched at ambient temperature without any cryogen into the Sun-Earth L2 orbit and cooled down in space to 4.5 K with use of efficient radiative cooling and mechanical coolers. The present status of SPICA and the developments of the satellite system are reported.

Submillimeter Galaxies and Their Environments

  • Kim, Kihun;Kim, Sungeun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.51.1-51.1
    • /
    • 2013
  • Submillimeter galaxies are the progenitors of massive galaxy formation, and therefore their interaction with the early intergalactic medium must be an important subject in the cosmology and galaxy astrophysics. However, their detailed relation between the galaxies and surrounding environments is still largely unknown. In this poster, we will present the characteristics of their surrounding environments of a large sample of mm-detected submillimeter galaxies. We will also discuss the proposal for the future observations of these galaxies and their environments using the ALMA and the GMT.

  • PDF

FAR INFRARED AND SUBMILLIMETRE SURVEYS: FROM IRAS TO AKARI, HERSCHEL AND PLANCK

  • Rowan-Robinson, Michael;Wang, Lingyu
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.293-297
    • /
    • 2017
  • We discuss a new IRAS Faint Source Catalog galaxy redshift catalogue (RIFSCz) which incorporates data from Galex, SDSS, 2MASS, WISE, AKARI and Planck. AKARI fluxes are consistent with photometry from other far infrared and submillimetre missions provided an aperture correction is applied. Results from the Hermes-SWIRE survey in Lockman are also discussed briefly, and the strong contrast between the galaxy populations selected at 60 and $500{\mu}m$ is summarized.

SACHS-WOLFE EFFECT IN PERTURBED BIANCHI TYPE I UNIVERSE (건드림된 비앙키 I형 우주 모형과 SACHS-WOLFE 공식)

  • SONG D. J.
    • Publications of The Korean Astronomical Society
    • /
    • v.16 no.1
    • /
    • pp.7-10
    • /
    • 2001
  • In the framework of the C-gauge condition for the perturbed variables and the linear approximation for the anisotropy of the spacetime, we studied the formulae for the Sachs-Wolfe effect in dust filled and perturbed Bianchi type I universe model. The results were compared with those of the flat Friedmann model.

  • PDF

ELECTRON-NEUTRINO DEGENERACY AND PRIMORDIAL NUCLEOSYNTHESIS

  • KIM JONG BOCK;KIM JOON HA;LEE HYUN KYU
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.15-16
    • /
    • 1996
  • We discuss the possible ranges of electron neutrino degeneracy which is consistent with the inferred primordial abundances of the light elements. It is found that the electron neutrino degeneracy, [${\epsilon}_e$], up to order of $10^{-1}$ is consistent with the present data.

  • PDF