• Title/Summary/Keyword: Korean Register of Shipping

Search Result 173, Processing Time 0.031 seconds

A statistical procedure of analyzing container ship operation data for finding fuel consumption patterns (연료 소비 패턴 발견을 위한 컨테이너선 운항데이터 분석의 통계적 절차)

  • Kim, Kyung-Jun;Lee, Su-Dong;Jun, Chi-Hyuck;Park, Kae-Myoung;Byeon, Sang-Su
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.633-645
    • /
    • 2017
  • This study proposes a statistical procedure for analyzing container ship operation data that can help determine fuel consumption patterns. We first investigate the features that affect fuel consumption and develop the prediction model to find current fuel consumption. The ship data can be divided into two-type data. One set of operation data includes sea route, voyage information, longitudinal water speed, longitudinal ground speed, and wind, the other includes machinery data such as engine power, rpm, fuel consumption, temperature, and pressure. In this study, we separate the effects of external force on ships according to Beaufort Scale and apply a partial least squares regression to develop a prediction model.

Development of Structural Design Program to apply the Twin-Hull Car-ferry (쌍동형 카페리 구조설계용 프로그램 개발)

  • Lee, Jung-Ho;Oh, Jung-Mo;Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.731-738
    • /
    • 2017
  • Twin-hulls frequently incur structural damage at connecting members between the hull and deck induced by pitching motions during voyages. so, reasonable reinforcement is necessary around vulnerable spots such as corner knuckle, the chine bottom and inner hull. Since guidelines for structural design are not clear, engineers often respond by reinforcing plate thickness, changing stiffener sizes and reducing frame spacing, etc. These members constitute about 85 % of the longitudinal dimensions of the ship, so it is necessary to locally reinforce certain points to minimize weight stress, and also solve construction cost problems while securing the freeboard margin. Therefore, we developed a new program by analyzing the structural design procedures for the twin car-ferries based on Korean Register of Shipping (KR) High Speed Craft Rules, identifying items that need to be added. In order to ensure the reliability of buckling estimations for procedures and design programs, we conducted a comparative study with other standards and confirmed that differences were minimal.

Effect of AC Electric Fields on Counterflow Diffusion Flame of Methane (메탄의 대향류 확산화염에 대한 AC 전기장의 영향)

  • Choi, Byung-Chul;Kim, Hyung-Kuk;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.849-855
    • /
    • 2012
  • The effect of electric fields on the response of diffusion flames in a counterflow has been investigated experimentally by varying the AC voltage and frequency. The result showed that the flame was stationary with high AC frequency above the threshold frequency, and it increased with the applied voltage and then leveled off at 35 Hz. Below the threshold frequency, however, the flame oscillated with a frequency that was synchronized with the applied AC frequency. This oscillation can be attributed to the ionic wind effect due to the generation of bulk flow, which arises from the momentum transfer by molecular collisions between neutral molecules and ions, where the ions in the reaction zone were accelerated by the Lorentz force.

Effect of Ignition Delay Time on Autoignited Laminar Lifted Flames (자발화된 층류 부상화염에 대한 점화지연시간의 영향)

  • Choi, Byung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1025-1031
    • /
    • 2011
  • Autoignition characteristic is an important parameter for designing diesel or PCCI engines. In particular, diesel spray flames are lifted from the nozzle and the initial flame is formed by an autoignition phenomenon. The lifted nature of diesel spray flames influences soot formation, since air will be entrained into the spray core by the entrainment of air between the nozzle region and the lifted flame base. The objective of the present study was to identify the effect of heat loss on the ignition delay time by adopting a coflow jet as a model problem. Methane ($CH_4$), ethylene ($C_2H_4$), ethane ($C_2H_6$), propene ($C_3H_6$), propane ($C_3H_8$), and normal butane (n-$C_4H_{10}$) fuels were injected into high temperature air, and the liftoff height was measured experimentally. As the result, a correlation was determined between the liftoff height of the autoignited lifted flame and the ignition delay time considering the heat loss to the atmosphere.

Study of Structural Design of Polyethylene Pleasure Boat (폴리에틸렌 플레저 보트의 구조설계에 관한 연구)

  • Cho, Seok Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1551-1561
    • /
    • 2012
  • Boat or yacht hulls are mainly built using FRP composite materials. FRP boat hull manufacturing has been restricted since 2000 under international regulations on ocean environment safety. FRP composite materials cannot be recycled and require more than 100 years to biodegrade. Therefore, alternatives to FRP have been proposed by many boat builders. Steel, aluminum, and FRP are commonly used as boat hull materials. Their design specifications are proposed as Korean register of shipping. However, the design specifications for inexpensive materials for a small boat have not yet been studied. Small shipbuilders manufacture and sell HDPE canoes or HDPE kayaks. In this study, a hull form was designed based on actual boats. The thickness of an HDPE boat hull was determined based on ISO 12215-5 structural design specifications.

Multi-MW Class Wind Turbine Blade Design Part I : Aero-Structure Design and Integrated Load Analysis (Multi-MW급 풍력발전용 블레이드 설계에 관한 연구 Part I : 공력-구조 설계 및 통합하중해석)

  • Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.289-309
    • /
    • 2014
  • A rotor blade is an important device that converts kinetic energy of wind into mechanical energy. Rotor blades affect the power performance, energy conversion efficiency, and loading and dynamic stability of wind turbines. Therefore, considering the characteristics of a wind turbine system is important for achieving optimal blade design. This study examined the general blade design procedure for a wind turbine system and aero-structure design results for a 2-MW class wind turbine blade (KR40.1b). As suggested above, a rotor blade cannot be designed independently, because its ultimate and fatigue loads are highly dependent on system operating conditions. Thus, a reference 2-MW wind turbine system was also developed for the system integrated load calculations. All calculations were performed in accordance with IEC 61400-1 and the KR guidelines for wind turbines.

Optimization of Design Pressure Ratio of Positive Displacement Expander for Engine Waste Heat Recovery of Vehicle (자동차 엔진 폐열 회수 동력시스템에서 용적형 팽창기의 설계 팽창비 최적화)

  • Kim, Young Min;Shin, Dong Gil;Kim, Chang Gi;Woo, Se Jong;Choi, Byung Chul
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.411-418
    • /
    • 2012
  • The effect of built-in volume ratio of expander on the performance of a two-loop Rankine cycle system for engine waste heat recovery of vehicle has been investigated. In the case of positive displacement expander in the various operating condition of the vehicle, it can operate in both under-expansion and over-expansion conditions. Therefore, the analysis of off-design performance for the expander is very important. Furthermore, the volume and weight of the expander as well as the efficiency must be considered in the optimization of the expander. This study shows that the built-in volume ratio of expander causing under-expansion at a target condition is more desirable considering the off-design performance and size of the expander, based on the simple modeling of off-design operation of the expander.

Conceptual Design of Product & Asset Lifecycle Management System for Marine Structures During Middle of Life (선박해양구조물의 유지보수 단계 수명주기관리 정보 시스템의 개념 설계와 구현)

  • Kim, Seung-Hyun;Lee, Jang-Hyun;Son, Gum-Jun;Han, Eun-Jung
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.58-67
    • /
    • 2012
  • Recently, both the integration of product data during design and production and the effective management of information during full lifecycles have attracted attention from shipyards and ship owners as a result of recycling regulations and a desire for efficient operations. Generally, PLM (Product Lifecycle Management) supports a collaborative environment during the BOL (Beginning of Life) stage, while an ALM (Asset Lifecycle Management) system provides all of the information required to maintain, overhaul, and discard/recycle all or part of a vessel during the MOL (Middle of Life) and EOL (End of Life) stages. The main goal of this paper is to suggest the fundamental configuration of a PALM (Product Asset Lifecylce Management) system and a method that can be used to utilize a marine vessel's lifecycle information during the MOL, emphasizing the maintenance information during the middle of life. The authors also suggest a PALM system configuration in which lifecycle information can be collected by a PEID (Product Embedded Information Device) integrating a microcomputer, sensors, and wireless network communication. Through a prototype PALM system, the suggested features and PALM system configuration are implemented.

Harmonics reduction by accuracy of DC shaping of power converters (전력변환장치의 직류 파형 개선을 통한 고조파 저감)

  • Kim, Jongsu;Ahn, Jaehong;Kim, Seonghwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1131-1136
    • /
    • 2014
  • Recently, power converters installed on the specialized vessels such as LNG Carrier and Icebreaker and offshore plants mainly use diode rectifier. However, such devices cause distortion of supply voltage waveform by involving much harmonics to input current of non linearity load in rectifying operation. Distortion of supply voltage waveform can be problems such as false operation of generator, transformer and load device and deterioration of power quality. This thesis is focusing with a view to producing accurate sinusoidal AC waveform with certain load through improvement of distortion of current waveform causing under operation of rectifier by using accurate circuit of DC shaping. The result of computer simulation proved that harmonics involved in current and voltage waveform of power system can be reduced.

Hull Strength Evaluation of Dissemination 12ft Bass Fishing Boat Using FEA (보급형 12피트 배스 낚시보트의 유한요소해석을 통한 선체강도평가)

  • Oh, Young-Cheol;Ko, Jae-Yong;Chung, Se-Yun;Choi, Jeong-Hwan;Kim, Hyeon-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.225-226
    • /
    • 2012
  • Recently, In the domestic is used mainly fiberglass reinforced plastic(GRP) and is built for maritime leisure vessel & structures. but it less attention is insufficient for ship of structural strength assessment of maritime leisure vessel. Therefore, The structural strength evaluation suitable for the domestic situation formulate and is applied to domestic regulations of "Guidance for Recreational Crafts" of Korea register of shipping(KR) & "Reinforced plastic line structure standards" of Ministry of Land, Transport and Maritime Affairs. the structural design and finite element analysis(FEA) to ensure the reliability.

  • PDF