• Title/Summary/Keyword: Korean Power System

Search Result 28,828, Processing Time 0.056 seconds

Comparative Study on 220V AC Feed System and 300V DC Feed System for Internet Data Centers

  • Kim, Hyo-Sung
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.157-163
    • /
    • 2012
  • Internet Data Centers (IDCs), which are essential facilities in the modern IT industry, typically have scores of MW of concentrated electric loads. The provision of an Uninterruptible Power Supply (UPS) is necessary for the power feed system of IDCs owing to the need for stable power. Thus, conventional IDC AC power feed systems have three cascaded power conversion stages, (AC-DC), (DC-AC), and (AC-DC), resulting in a very low conversion efficiency. In comparison, DC power feed systems require only a single power conversion stage (AC-DC) to supply AC main power to DC server loads, resulting in comparatively high conversion efficiency and reliability [4-11]. This paper compares the efficiencies of a 220V AC power feed system with those of a 300V DC power feed system under equal load conditions, as established by the Mok-Dong IDC of Korea Telecom Co. Ltd. (KT). Experimental results show that the total operation efficiency of the 300V DC power feed system is approximately 15% higher than that of the 220V AC power feed system.

Application of MMC-HVDC System for Regulating Grid Voltage Based on Jeju Island Power System (제주계통의 전압조정을 위한 MMC-HVDC 시스템 응용)

  • Quach, Ngoc-Thinh;Kim, Eel-Hwan;Lee, Do-Heon;Kim, Ho-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.494-502
    • /
    • 2014
  • This paper presents a control method of the modular multilevel converter - high-voltage direct current (MMC-HVDC) system to regulate grid voltage on the basis of the Jeju Island power system. In this case, the MMC-HVDC system is controlled as a static synchronous compensator (Statcom) to exchange the reactive power with the power grid. The operation of the MMC-HVDC system is verified by using the PSCAD/EMTDC simulation program. The Jeju Island power system is first established on the basis of the parameters and measured data from the real Jeju Island power system. This power system consists of two line-commutated converter - high-voltage direct current (LCC-HVDC) systems, two Statcom systems, wind farms, thermal power plants, transformers, and transmission and distribution lines. The proposed control method is then applied by replacing one LCC-HVDC system with a MMC-HVDC system. Simulation results with and without using the MMC-HVDC system are compared to evaluate the effectiveness of the control method.

Parameter Selection Method for Power System Stabilizer of a Power Plant based on Hybrid System Modeling (하이브리드시스템 모델링 기반 발전기 전력시스템 안정화장치 정수선정 기법)

  • Baek, Seung-Mook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.883-888
    • /
    • 2014
  • The paper describes the parameter tuning of power system stabilizer (PSS) for a power plant based on hybrid system modeling. The existing tuning method based on bode plot and root locus is well applied to keep power system stable. However, due to linearization of power system and an assumption that the parameter ratio of the lead-lag compensator in PSS is fixed, the results cannot guarantee the optimal performances to damp out low-frequency oscillation. Therefore, in this paper, hybrid system modeling, which has a DAIS (differential-algebraic-impusive-switched) structure, is applied to conduct nonlinear modeling for power system and find optimal parameter set of the PSS. The performances of the proposed method are carried out by time domain simulation with a single machine connected to infinite bus (SMIB) system.

Reliability Evaluation of Power System Operations Considering Time-Varying Features of Components

  • Hu, Bo;Zheng, Ying;Yang, Hejun;Xia, Yun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1422-1431
    • /
    • 2015
  • The reliability of power system components can be affected by a numbers of factors such as the health level of components, external environment and operation environment of power systems. These factors also affect the electrical parameters of power system components for example the thermal capacity of a transmission element. The relationship of component reliability and power system is, therefore, a complex nonlinear function related to the above-mentioned factors. Traditional approaches for reliability assessment of power systems do not take the influence of these factors into account. The assessment results could not, therefore, reflect the short-term trend of the system reliability performance considering the influence of the key factors and provide the system dispatchers with enough information to make decent operational decisions. This paper discusses some of these important operational issues from the perspective of power system reliability. The discussions include operational reliability of power systems, reliability influence models for main performance parameters of components, time-varying reliability models of components, and a reliability assessment algorithm for power system operations considering the time-varying characteristic of various parameters. The significance of these discussions and applications of the proposed techniques are illustrated by case study results using the IEEE-RTS.

Korean Power System Security Analysis Using Benchmark Systems

  • Cho Yoon-Sung;Jang Gilsoo
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.207-213
    • /
    • 2005
  • This paper deals with the development of benchmark systems based on the Korea Electric Power Corporation (KEPCO) system. A novel procedure for constructing a dynamic equivalent system of the KEPCO system is proposed. By using such a system, various scenarios can be simulated and compared with the original system. The results of the simulation show the benefits of the proposed equivalent system and its validity is confirmed by applying it to the KEPCO system.

An Development of Landscape Lighting Power Control System with Solar Cell Generator Equipment for Energy Saving (에너지절감을 위한 태양광발전설비 연계형 경관조명 전력제어시스템의 개발)

  • Kim, Dong-Wan;Park, Sung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.364-371
    • /
    • 2010
  • In this paper, we propose the landscape lighting power control system with solar sell generator equipment for energy saving, and also which is included the landscape lighting power transformation device. The power transformation device can check inverse current in the power of the solar cell module and control the power of the battery. And we present the design of landscape lighting power control system. The power control system uses microprocessor with charging system and power transformation device. And also it can control the power of loads under consideration intensity of illumination. The landscape lighting loads are composed of LED(Lighting Emitting Diode) and HID(High Intensity Discharge)lamps. To evaluate property, we installed the solar cell array which generate three kilo watt power. Experimental results show that the proposed system can have stability and energy saving on the mixed configuration of electric loads with DC and AC lamps.

A Study on Power System Decomposition Technique for Digital Simulation of Large Power System (대규모 계통의 디지털 시뮬레이션을 위한 계통분할 기법이 관한 연구)

  • Lee, Chul-Kyun;Lee, Jin;Kim, Tae-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.171-173
    • /
    • 2002
  • This paper presents a power system decomposition technique for digital simulation of large power system. To decompose power system, distributed transmission line model is used. But this model can be used only for long transmission lines. In this paper, capacitor compensation method is proposed to use distributed transmission line model for short transmission line. And case study shows proposed method can be used for effective power system decompositon in digital simulation of large power system.

  • PDF

Feasibility Study on the Development of $High-T_c$ Superconducting Power Cable System (고온초전도 케이블 시스템 개발에 관한 타당성 조사)

  • Hwang, Si-Dole;Hyun, Ok-Bae;Choi, Hyo-Sang;Kim, Hye-Rim;Kim, Sang-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.172-174
    • /
    • 2000
  • This paper summarizes the feasibility study of HTS power cables in Korea, including the conceptual design of a 154 kV 1000 MVA class HTS cable system, and the relative economic evaluations between conventional and HTS cable systems in Seoul area. According to the results of the economic evaluations, the HTS cable system can reduce the construction work for 168km of underground transmission lines, saving 700 million USD of construction cost in 2010.

  • PDF

The Failure Analysis of Paralleled Solar Array Regulator for Satellite Power System in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.2
    • /
    • pp.133-141
    • /
    • 2011
  • A satellite power system should generate and supply sufficient electric power to perform the satellite mission successfully during the satellite mission period, and it should be developed to be strong to the failure caused by the severe space environment. A satellite power system must have a high reliability with respect to failure. Since it cannot be repaired after launching, different from a ground system, the failures that may happen in space as well as the effect of the failures on the system should be considered in advance. However, it is difficult to use all the hardware to test the performance of the satellite power system to be developed in order to consider the failure mechanism of the electrical power system. Therefore, it is necessary to develop an accurate model for the main components of a power system and, based on that, to develop an accurate model for the entire power system. Through the power system modeling, the overall effect of failure on the main components of the power system can be considered and the protective design can be devised against the failure. In this study, to analyze the failure mode of the power system and the effects of the failure on the power system, we carried out modeling of the main power system components including the solar array regulator, and constituted the entire power system based on the modeling. Additionally, we investigated the effects of representative failures in the solar array regulator on the power system using the power system model.

Analysis of Transmission Power System with Superconducting Fault Current Limiter for Reducing a Fault Current (초전도 한류기 적용을 통한 모의 송전계통의 고장 전류 저감 분석)

  • Kim, Myong-Hyon;Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul;Choo, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.718-719
    • /
    • 2011
  • Lately, the demand for electrical power has been significantly increased. As a result a power transmission system has been improved. On the other hand fault current increased more than past. Superconducting fault current limiter (SFCL) is one of the solutions to limit fault current. However, SFCL's research has not advanced in a power transmission system fully. Therefore, we studied effect of SFCL in a power transmission system. The power distribution system is open-loop circuit, but a power transmission system is closed-loop system. Consequently, Fault current in a power transmission system is larger than fault current in a power distribution system. we exerimented a simple closed-loop power transmission system circuit.

  • PDF