• Title/Summary/Keyword: Korean Native Pig(KNP)

Search Result 37, Processing Time 0.026 seconds

Characterization of QTL for Growth and Meat Quality in Combined Pig QTL Populations

  • Li, Y.;Choi, B.H.;Lee, Y.M.;Alam, M.;Lee, J.H.;Kim, K.S.;Baek, K.H.;Kim, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1651-1659
    • /
    • 2011
  • This study was conducted to detect quantitative trait loci (QTL) for thirteen growth and meat quality traits in pigs by combing QTL experimental populations. Two F2 reference populations that were sired by Korea native pig (KNP) and dammed by Landrace (LN) or Yorkshire (YK) were generated to construct linkage maps using 123 genetic markers (mostly microsatellites) and to perform QTL analysis on porcine chromosomes (SSCs) 1, 2, 3, 6, 7, 8, 9, 11, 13, 14, and 15. A set of line-cross models was applied to detect QTL, and a series of lack-of-fit tests between the models was used to characterize inheritance mode of QTL. A total of 23, 11 and 19 QTL were detected at 5% chromosome-wise level for the data sets of KNP${\times}$LN, KNP${\times}$YK cross and joint sets of the two cross populations, respectively. With the joint data, two Mendelian expressed QTL for live weight and cooking loss were detected on SSC3 and SSC15 at 1% chromosome-wise level, respectively. Another Mendelian expressed QTL was detected for CIE a on SSC7 at 5% genome-wise level. Our results suggest that QTL analysis by combining data from two QTL populations increase power for QTL detection, which could provide more accurate genetic information in subsequent marker-assisted selection.

Development of Optimal Breeding Pigs Using DNA Marker Information

  • Kim, Sang-Wook;Roh, Jung-Gun;Cho, Yang-Il;Choi, Bong-Hwan;Kim, Tae-Hun;Kim, Jong-Joo;Kim, Kwan-Suk
    • Genomics & Informatics
    • /
    • v.8 no.2
    • /
    • pp.81-85
    • /
    • 2010
  • The aim of the study was to investigate pig reference families, generated from Korean native pigs (KNP) that were crossed with Yorkshire (YS) breeds, which were used to evaluate genetic markers to select breeding animals with superior pork quality. A set of five candidate genes (PRKAG3, MC4R, CAST, ESR, and PRLR ) was analyzed for association with pork quality traits. PRKAG3 (I199V) SNP genotypes were significantly associated with muscle moisture, protein, and fat contents. The MC4R D298N polymorphism was significantly associated with meat tenderness and color traits. The CAST polymorphism was significantly associated with muscle moisture and crude protein traits. These three genes have been associated with pork quality traits in other pig populations, and some of our results are consistent with earlier studies. In addition, two reproductive candidate genes (ESR and PRLR ) did not have significant associations. These results suggest that further study is warranted to investigate and develop more DNA markers associated with pork quality in our KNP-crossed pig families.

A Whole Genome Association Study to Detect Single Nucleotide Polymorphisms for Blood Components (Immunity) in a Cross between Korean Native Pig and Yorkshire

  • Lee, Y.M.;Alam, M.;Choi, B.H.;Kim, K.S.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.12
    • /
    • pp.1674-1680
    • /
    • 2012
  • The purpose of this study was to detect significant SNPs for blood components that were related to immunity using high single nucleotide polymorphism (SNP) density panels in a Korean native pig (KNP)${\times}$Yorkshire (YK) cross population. A reciprocal design of KNP${\times}$YK produced 249 $F_2$ individuals that were genotyped for a total of 46,865 available SNPs in the Illumina porcine 60K beadchip. To perform whole genome association analysis (WGA), phenotypes were regressed on each SNP under a simple linear regression model after adjustment for sex and slaughter age. To set up a significance threshold, 0.1% point-wise p value from F distribution was used for each SNP test. Among the significant SNPs for a trait, the best set of SNP markers were determined using a stepwise regression procedure with the rates of inclusion and exclusion of each SNP out of the model at 0.001 level. A total of 54 SNPs were detected; 10, 6, 4, 4, 5, 4, 5, 10, and 6 SNPs for neutrophil, lymphocyte, monocyte, eosinophil, basophil, atypical lymph, immuno-globulin, insulin, and insulin-like growth factor-I, respectively. Each set of significant SNPs per trait explained 24 to 42% of phenotypic variance. Several pleiotropic SNPs were detected on SSCs 4, 13, 14 and 15.

Association between Economic Traits and Candidate Gene Polymorphism in Korean Native Pig and Duroc (한국 재래 돼지와 듀록의 경제형질과 후보 유전자 다형성간의 연관성 분석)

  • Kim, M.J.;Oh, J.D.;Cho, G.H.;Lee, J.H.;Lee, S.S.;Hong, Y.S.;Jeon, K.J.;Jeon, G.J.;Lee, H.K.
    • Journal of Embryo Transfer
    • /
    • v.21 no.4
    • /
    • pp.273-280
    • /
    • 2006
  • MC4R, PRKAG3, FABP3, and ESR have reported as important candidate genes related to some economic traits in pigs. To investigate the association between these genes and economic traits, the analysis of restriction fragment length polymorphism (RFLP) was conducted on 147 individuals (96 Durocs and 86 Korea native pigs; KNP) using single nucleotide polymorphism (SNP). Different genotype frequencies of 4 candidate genes were observed in Duroc and KNP. There were significant associations between MC4R polymorphic site and average daily gain (ADG, p<0.05) and backfat thickness (BF, p<0.05) in the Duroc, ADG (p<0.05) and days to 70 kg (p<0.05) in KNP. PRXAG3 polymorphic site were significantly .elated to BF (p<0.05) in the Duroc, ADG (p<0.05) and days to 70 kg (p<0.05) in the KNP. In FABP3, association with BF (p<0.05) in the Duroc, ADG (p<0.05) and days to 70 kg (p<0.05) in the KNP were found. ESR polymorphic site was not significantly associated to any other traits.

A study on shelf life of prepackaged retail-ready Korean native black pork belly and shoulder butt slices during refrigerated display

  • Hoa, Van-Ba;Seol, Kuk-Hwan;Kang, Sun-Moon;Kim, Yun-Seok;Cho, Soo-Hyun
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.2012-2022
    • /
    • 2021
  • Objective: In most retail centers, primal pork cuts for sale are usually prepared into retail-ready slices and overwrapped with air-permeable plastic film. Also, meat of Korean native black pig (KNP) is reputed for its superior quality, however, its shelf life during retail display has not been studied. Thus, the objective of this study was to evaluate shelf life of prepackaged retail-ready KNP belly and shoulder butt slices during refrigerated display. Methods: Bellies and shoulder butt obtained at 24 h post-mortem from finishing KNP were used. Each belly or shoulder butt was manually cut into 1.5 cm-thick slices. The slices in each cut type were randomly taken and placed on white foam tray (2 slices/tray) overwrapped with polyvinyl chloride film. The retail-ready packages were then placed in a retail display cabinet at 4℃. Shelf life and sensory quality of the samples were evaluated on day 1, 3, 6, 9, 12, and 15 of display. Results: The shoulder butt reached the upper limit (20 mg/100 g) of volatile basic nitrogen for fresh meat after 9 days while, the belly remained within this limit throughout the display time (15 days). Both the cuts reached a thiobarbituric acid reactive substances level of above 0.5 mg malondialdehyde/kg after 9 days. The a* (redness) values remained unchanged during first 9 days in both cuts (p>0.05). After 9 days, off-flavor was not found in either cut, but higher off-flavor intensity was found in shoulder butt after 12 days. The shoulder butt was unacceptable for overall eating quality after 12 days while, belly still was acceptable after 12 days. Conclusion: The belly showed a longer shelf life compared to the shoulder butt, and a shelf life of 9 and 12 days is recommended for the prepackaged retail-ready KNP shoulder butt and belly slices, respectively.

Identification of SNPs Affecting Porcine Carcass Weight with the 60K SNP Chip

  • Kang, Kwon;Seo, Dong-Won;Lee, Jae-Bong;Jung, Eun-Ji;Park, Hee-Bok;Cho, In-Cheol;Lim, Hyun-Tae;Lee, Jun Heon
    • Journal of Animal Science and Technology
    • /
    • v.55 no.4
    • /
    • pp.231-235
    • /
    • 2013
  • Carcass weight (CW) is one of the most important economic traits in pigs, directly affecting the income of farmers. In this study, a genome wide association study was performed to detect significant single nucleotide polymorphisms (SNPs) affecting CW in pigs derived from a $F_2$ intercross between Landrace and Korean native pig (KNP). Using high-density porcine SNP chips, highly significant SNPs were identified on SSC12. Two candidate genes, LOC100523510 and LOC100621652, were subsequently selected within this region and further investigated. Within these candidate genes, five SNPs were identified and genotyped using the VeraCode GoldenGate assay. The results revealed that one SNP in the LOC100621652 gene and four SNPs in the LOC100523510 gene are highly associated with CW. These SNP markers can thus have significant applications for improving CW in KNP. However, the functions of these candidate genes are not fully understood and require further study.

The current status of Korean native pig production

  • Esther Lee;Jae-Cheol Jang;Sang-Hyon OH
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1169-1179
    • /
    • 2023
  • Korean native pigs (KNPs) have been one of the traditional livestock primarily raised in rural areas of Korea for centuries. KNPs have adapted to the climate and geography of the Korean Peninsula for a long time, exhibiting excellent adaptability even in challenging environments. For these reasons, the preservation and purification of KNPs are crucial in securing unique genetic resources. Therefore, this review covers the characteristics, production status, commercial value and potential breeding directions of KNPs. Unfortunately, there is still a long way to go for the improvement of KNPs. It is crucial to acknowledge the current challenges, identify the issues, and dedicate efforts to the breed's improvement. Each section of this comprehensive review will play an important role in integrating related research and data into the overall findings. In-depth discussions on the genetic diversity, productivity, genetic conservation, ecological roles, and sustainability of KNPs will be crucial components in the future of KNP business.

A whole genomic scan to detect selection signatures between Berkshire and Korean native pig breeds

  • Edea, Zewdu;Kim, Kwan-Suk
    • Journal of Animal Science and Technology
    • /
    • v.56 no.7
    • /
    • pp.23.1-23.7
    • /
    • 2014
  • Background: Scanning of the genome for selection signatures between breeds may play important role in understanding the underlie causes for observable phenotypic variations. The discovery of high density single nucleotide polymorphisms (SNPs) provide a useful starting point to perform genome-wide scan in pig populations in order to identify loci/candidate genes underlie phenotypic variation in pig breeds and facilitate genetic improvement programs. However, prior to this study genomic region under selection in commercially selected Berkshire and Korean native pig breeds has never been detected using high density SNP markers. To this end, we have genotyped 45 animals using Porcine SNP60 chip to detect selection signatures in the genome of the two breeds by using the $F_{ST}$ approach. Results: In the comparison of Berkshire and KNP breeds using the FDIST approach, a total of 1108 outlier loci (3.48%) were significantly different from zero at 99% confidence level with 870 of the outlier SNPs displaying high level of genetic differentiation ($F_{ST}{\geq}0.490$). The identified candidate genes were involved in a wide array of biological processes and molecular functions. Results revealed that 19 candidate genes were enriched in phosphate metabolism (GO: 0006796; ADCK1, ACYP1, CAMK2D, CDK13, CDK13, ERN1, GALK2, INPP1; MAK, MAP2K5, MAP3K1, MAPK14, P14KB, PIK3C3, PRKC1, PTPRK, RNASEL, THBS1, BRAF, VRK1). We have identified a set of candidate genes under selection and have known to be involved in growth, size and pork quality (CART, AGL, CF7L2, MAP2K5, DLK1, GLI3, CA3 and MC3R), ear morphology and size (HMGA2 and SOX5) stress response (ATF2, MSRB3, TMTC3 and SCAF8) and immune response (HCST and RYR1). Conclusions: Some of the genes may be used to facilitate genetic improvement programs. Our results also provide insights for better understanding of the process and influence of breed development on the pattern of genetic variations.

Characterization of a Korean Traditional Porcine Breed Using Microsatellite Markers and the Establishment of an Individual Identification System (Microsatellite Marker를 이용한 한국재래돼지 집단의 품종특성 및 원산지 추적을 위한 개체식별체계 설정)

  • Kim, M.J.;Li, G.H.;Oh, J.D.;Cho, K.H.;Jeon, G.J.;Choi, B.H.;Lee, J.H.;Hong, Y.S.;Kong, H.S.;Lee, H.K.
    • Food Science of Animal Resources
    • /
    • v.27 no.2
    • /
    • pp.150-156
    • /
    • 2007
  • This study was conducted to analyze the genetic characteristics of Korean Native Pigs(KNP), and to establish an individual identification system comprising many microsatellite markers located on different pig autosomes. Genotype data from 13 microsatellites typed in 446 animals was used to determine the validation of a method of individual identification in 4 KNP. A total of 112 alleles of the 13 microsatellites were detected and average heterozygosities(polymorphic information content) ranged from 0.286(0.423) to 0.686(0.796) in this study. Comparing the pattern of allele frequency among the KNP, Yorkshire, Landrace and Duroc breeds, there was specific differentiation between populations at multi-allelic loci. The cumulative power of discrimination(CPD) was 99.999% by including 10 microsatellite loci for the individual identification system. The probability that two different individuals incidentally have same genotype was estimated to be $0.36{\times}10^{-9}$. The system employing these 10 markers therefore proved to be applicable to the individual identification of KNP.

Effect of Particular Breed on the Chemical Composition, Texture, Color, and Sensorial Characteristics of Dry-cured Ham

  • Seong, Pil Nam;Park, Kuyng Mi;Kang, Sun Moon;Kang, Geun Ho;Cho, Soo Hyun;Park, Beom Young;Ba, Hoa Van
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.8
    • /
    • pp.1164-1173
    • /
    • 2014
  • The present study demonstrates the impact of specific breed on the characteristics of dry-cured ham. Eighty thighs from Korean native pig (KNP), crossbreed (Landrace${\times}$YorkshireLandrace${\times}$Yorkshire)♀${\times}$Duroc♂ (LYD), Berkshire (Ber), and Duroc (Du) pig breeds (n = 10 for each breed) were used for processing of dry-cured ham. The thighs were salted with 6% NaCl (w/w) and 100 ppm $NaNO_2$, and total processing time was 413 days. The effects of breed on the physicochemical composition, texture, color and sensory characteristics were assessed on the biceps femoris muscle of the hams. The results revealed that the highest weight loss was found in the dry-cured ham of LYD breed and the lowest weight loss was found in Ber dry-cured ham. The KNP dry-cured ham contain higher intramuscular fat level than other breed hams (p<0.05). It was observed that the dry-cured ham made from KNP breed had the lowest water activity value and highest salt content, while the LYD dry-cure ham had higher total volatile basic nitrogen content than the Ber and Du hams (p<0.05). Zinc, iron and total monounsaturated fatty acids levels were higher in KNP ham while polyunsaturated fatty acids levels were higher in Du ham when compared to other breed hams (p<0.05). Additionally, the KNP dry-cured ham possessed higher Commission International de l'Eclairage (CIE) $a^*$ value, while the Du dry-cured ham had higher $L^*$, CIE $b^*$ and hue angle values (p<0.05). Furthermore, breed significantly affected the sensory attributes of dry-cured hams with higher scores for color, aroma and taste found in KNP dry-cured ham as compared to other breed hams (p<0.05). The overall outcome of the study is that the breed has a potential effect on the specific chemical composition, texture, color and sensorial properties of dry-cured hams. These data could be useful for meat processors to select the suitable breeds for economical manufacturing of high quality dry-cured hams.