• Title/Summary/Keyword: Korean Lespedeza

Search Result 346, Processing Time 0.023 seconds

Diagnostic assessment on vegetation damage due to hydrofluoric gas leak accident and restoration planning to mitigate the damage in a forest ecosystem around Hube Globe in Gumi (구미 휴브글로브 주변 삼림생태계에서 불화수소가스 유출 사고에 기인한 식생피해 진단 및 그 피해를 완화시키기 위한 복원 계획)

  • Kim, Gyung Soon;An, Ji Hong;Lim, Chi Hong;Lim, Yun Kyung;Jung, Song Hie;Lee, Chang Seok
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • We obtained the following results from investigation on vegetation damage from 5 to 6 August, 2013, about one year after an accident that hydrofluoric acid leaked from a chemical maker, Hube Globe in Gumi. Pinus densiflora and Pinus strobus showed very severe damage. Ginko biloba, Quercus acutissima, Pinus rigida, Salix glandulosa, Hibiscus syriacus, and Lagerstroemia indica showed severe damage. Quercus variabilis, Lespedeza cyrtobotrya, and Miscanthus sinensis showed moderate damage. Quercus aliena, Smilax china, Arundidinella hirta, Ailanthus altissima, Robinia pseudoacacia, and Paulowinia coreana showed slight damage. We did not find any plants without leaf damage around there. This result means that fluoride damage still persists in this area as was known that fluoride remains for a long time in air, soil and water and exerts negative effects at all levels of an ecosystem. In addition, fluoride content contained in plant leaf depended on the distance from a fertilizer producing factory and vegetation damage tended to proportionate to the concentration in the Yeocheon industrial complex. In these respects, a measure for removal or detoxification of the remaining fluoride is urgently required around the hydrofluoric acid leak spot. Fertilizing of dolomite containing Ca and Mg, which can trap fluoride, was prepared as one of the restoration plans. In addition, phosphate fertilizing was added in order to enhance soil ameliorating effects. Furthermore, we recommend the introduction of tolerant plants as the second measure to mitigate fluoride damage. As the tolerant plants to make a new forest by replacing trees died due to hydrofluoric acid gas damage, we recommended Q. aliena and S. china, A. hirta, etc. were recommended as plant species to add mantle vegetation to the forest margin to ensure stable interior environment of the forest.

Studies on the Allelopathy of some Poaceae Plants (수종 화본과식물의 Allelopathy에 관한 연구)

  • Lee, Kyung Soon;Il Koo Lee
    • The Korean Journal of Ecology
    • /
    • v.4 no.3_4
    • /
    • pp.93-108
    • /
    • 1981
  • This investigation includes the sick soil phenomenon caused by the self-poisoning of Setaria italica, Sorghum nervosum, Zea mays and Miscanthus sinensis among Poaceae. It elucidates whether the poison is directly excreted from the root or the secondary product resulting from the decomposition in the soil; the effect of Miscantus sinensis on the germination and growth of other plants, and the effect of Zea mays grown between furrows to shade Angelica gigas on its growth. The results obtained are as follows; Supplied with the leakage water from the pots, in which the same plants as the test ones were grown, in anticipation of the poison to be directly excreted from their roots, Sataria itlaica and Zea mays exhibited the growth inhibition more than 30%, whereas Sorghum nervosum and Miscanthus sisnensis were not effected in growth at all. When cultivated in the soils mixed with the roots of the some plants as the test ones, in anticipation of the poison to be the secondary product resulting from the decomposition in soil, Setaria italica and Zea mays showd growth inhibition of more than 50%, which is greater than that of the case of the leakage water, and Miscanthus sinensis exhibited no inhibition either, whereas Sorghum nervosum in the 50% plot showed heavy growth inhibition of more than 80% to the case of the leakage water. The common or uncommon plants found easily in the group of Misscanthus scinenis were not affected by the extracts of the steam and leaves of Miscanthus sinensis in germination and growth. Supplied with the leakage water from the pots in which Miscanthus sinensis was grown, among Lespedeza crytobotrya, Oenothera odorata, Raphanus sativus val'. acarlthiformis, Zoysia japonica, Patrinia scabiosaefolia. which are easily found in the group of Miscanthus sinensis, only Patrinia scabiosaefolia was slightly inhibited in growth in the 100% plot, whereas the others did not show any inhibition at all. Mean while, Amaranthus patulus. Solanum nigrum, Capsella bursa-pastoris val'. triangularis, Alopecurus amurensis, Chenopodium album val'. centrorubrum, which could not be found in the group of Miscanthus sinensis, were all distinctly inhibited. In the experiment on the effect of Zea mays on the growth of Angelica gigas, its growth was severely inhibited by one-half to two thirds with the increased concentration in both the cases of growing in the mixture of the soil and the powdered root of Zea mays and being supplied with the leakage water from the pot in which Zea mays was grown.

  • PDF

Change of Flora of Damaged Land in Juwangsan National Park for Five Years (2010~2014) (주왕산국립공원 내 훼손지의 5년간(2010~2014년) 식물상 변화)

  • You, Juhan;Kim, Mijin
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.4
    • /
    • pp.233-247
    • /
    • 2016
  • The purpose of this study is to offer the basic data for management of National Park by surveying and analysing the change of flora of damaged lands in Juwangsan National Park, Korea. In cause of occurring the damaged lands, site-1 was the vegetation damage by stamping, the removing Gwangamsa of site-2, 3, 4 and the removing Naewon village of site-5, 6, 7. Whole sites are caused by the artificial disturbance and interference. The numbers of flora were summarized as 135 taxa including 52 families, 109 genera, 116 species, 2 subspecies and 17 varieties in whole sites. The status of flora by sites, site-6 is the largest number of 52 taxa, site-1 is the lowest of 23 taxa. The rare plant is 1 taxa, 4 taxa of endemic plants, 10 taxa of specific plants by floristic region, 9 taxa of naturalized plants and 1 taxa of invasive alien plant. In the results of analysis about the change of coverage ratio, for this shrub layer, site-7 was changed to the most $0%{\rightarrow}50%$, and the herb layer, site-5 was changed to the most $75%{\rightarrow}95%$. In case of the change of species numbers, most sites tended to increase in the sites introduced different species or generated by the growth. It is contemplated that is similar to the restoration with the surrounding natural vegetation that is in progress is a transition occurs with the passage of time. In the dominant species, the shrub layer is Fraxinus sieboldiana, Lespedeza bicolor, Rhus javanica, Lespedezamaximowiczii, Salix koreensis and Zelkova serrata, and Miscanthus sinensis var. purpurascens, Oplismenus undulatifolius, Artemisia princeps, Bothriochloa ischaemum and Erigeron annuus of herb layer. In the results of analysing Naturalized Index(NI) and Urbanized Index(UI), NI was increased or decreased this phenomenon with the lapse of time, UI was the most increase. In particular, the increase in UI is due to the transition process, the pioneering plant, naturalized plant was imported to continue.

The Analysis of Forest Vegetation in Mt. Kumjeong (금정산(金井山) 일대(-帶)의 삼림식생분석(森林植生分析))

  • Yun, Chung Weon;Bae, Kwan Ho;Hong, Sung Cheon
    • Current Research on Agriculture and Life Sciences
    • /
    • v.13
    • /
    • pp.31-44
    • /
    • 1995
  • Mt. Kumjeong is located in south-eastern part of the Korean Peninsular($129^{\circ}$01' to $129^{\circ}$05' E, $35^{\circ}$03' to $35^{\circ}$17' N) and the altitude of the summit is 802 meter. In order to find out the vegetation units which made it possible to classify subtropical forest and south-temperate forest, Mt. Kumjeong (which is located in a border of between subtropical forest and south-temperate forest) was selected as a study area. The primary result of actual vegetation analysis in Mt. Kumjeong based upon the vegetation community analysis methods by the ZM-school, and the relationships between vegetation community and two parameters(altitude, topography) analyzed by using coincidence analysis method were summarized as followings. 1. Based upon analytic methods of the vegetation community by the ZM-schools, the primary analytic result of the analysis of vegetation community in Mt. Kumjeong was divided into 10 communities, 9 groups, 2 subgroups. 2. Eurya japonica group of Pinus densiflora community out of 16 vegetation units was thought as a indicator vegetation group which made it possible to border subtropical forest and south-temperate forest. 3. Natural regeneration of Stewartia koreana group was thought to be difficult because seedling and sapling was rarely showed, 4. In relationship between vegetation units and altitude, Carpinus tschonoskii community, Quercus variabilis community, Quercus serrata community, Wisteria floribunda community,. Eurya japonica group of Pinus densiflora community, Pinus thunbergii community mainly distributed below altitude 500 meter, and Quercus mongolica community, Typical group of Pinus densiflora community, Quercus dentata community, Carpinus coreana community, Quercus acutissima community mainly distributed above altitude 500 meter. 5. In relationship between vegetation units and topography, Carpinus tschonoskii community, Quercus variabilis community, Quercus serrata community, Wisteria floribunda community,. Eurya japonica group of Pinus densiflora community distributed below middle slope, Quercus mongolica community, Typical group of Pinus densifiora community, Quercus dentata community, Carpinus coreana community, Pinus thunbergii community Quercus acutissima communily clistributed above midclle slope.

  • PDF

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF

Anatomical Studies on Root Formation in Hypocotyl and Epicotyl Cuttings of Woody Plants (임목(林木)의 배축(胚軸) 및 유경삽수발근(幼茎揷穗発根)의 해부학적(解剖学的) 연구(研究))

  • Choi, Man Bong
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.1-30
    • /
    • 1981
  • The origin and development of adventitious roots was studied using hypocotyl and epicotyl cuttings of 34 species, 24 genus of woody plants. These cuttings obtained from young seedlings cultured in vials containing distilled water only. The several characteristics of cuttings materials studied are shown in Table 1. The results are summerized as follows: 1. The circumference shapes of cross-sections of hypocotyl and epicotyl cuttings can be divided into six categories, namely, round, irregular round, ellipse, irregular ellipse, square, and triangle. Species differences within a genus did not show any difference of hypocotyl and epicotyl cross-sections shape, however, a noticeable variation among genus or higher taxa. 2. The arrangements of vascular bundles in the cross-sections of hypocotyls or epicotyls were almost all collateral types and generally showed generic characteristics differing one to the other. However, there were some variations between species within the genus. Six models of vascular bundle arrangement were proposed for all the above speices. 3. The rooting portions of hypocotyl and epicotyl cuttings in this experimental materials can be grouped as follows: (1) Interfascicular parenchyma; (Thuja orientalis. T. orientalis for. sieboldii, Acer microsieboldianum, A. palmatum, A. saccharinum, Cercis chinensis, Lespedeza bicolor, Magnolia obovata, M. sieboldii, Mallotus japonicus, Staphylea bumalda) (2) Cambial and phloem parenchyma: (Chamaecyparis obtusa, C. pisifera, Albizzia julibrissin, Buxus microphylla var. Koreana, Cereis chinensis, Euonymus japonica, Firmiana platanifolia, Lagerstroemia indica, Ligustrum salicinum, L. obtusifolium, Magnolia kobus, M. obovata, Mallotus japonicus, Morus alba, Poncirus trifoliata, Quercus myrsinaefolia, Rosa polyantha, Styrax japonica, Styrax obassia) (3) Primary ray tissues; (Euonymus japonica, Styrax japonica) (4) Leaf traces; (Quercus acutissima, Q. aliena) (5) Cortex parenchyma; (Ailanthus altissima) (6) Callus tissues; (Castanea crenata, Quercus aliena, Q. myrsinaefolia, Q. serrata) 4. As a general tendency throughout the species studied, in hypocotyl cuttings, the adventitious root primordia were originated from the interfascicular parenchyma tissue, however, leaf traces and callus tissues were contributed to the root primordia formation in epicotyl cuttings. The hypocotyl cuttings of Ailanthus altissima exhibited a special performance in the root primordia formation, this means that cortex parenchyma was participated to the origin tissue. And in Firmiana platanifolia, differening from the other most species, the root primordia were formed at the phloem parenchyma adjacent outwardly to xylem tissue of vascular bundle system as shown photo. 48. 5. All the easy-to, or difficult-to root species developed adventitious roots in vials filled with distilled water. In the difficult-to-root species, however, root formations seemed to be delayed because they almost all had selerenchyma or phloem fiber which gave some mechanical hindrance to protrusion of root primordia. On the other hand, in the easy-to-root species they seemed to form them more easily because they did not have the said tissues. The rooting portions between easy-to-root and difficult-to-root species have not clearly been distinguished, and they have multitudinous variations. 6. The species structured with the more vascular bundles in number compared with the less vascular bundles exhibited delayed rooting. In the cuttings preparation, the proximal end of cuttings was closer to root-to-stem transition region, the adventitious root formation showed easier. 7. A different case occured however with the mature stem cuttings, in both the needle-leaved and the broad-leaved species. In the hypocotyl cuttings, parenchymatous tissues sited near the vascular bundles become the most frequent root forming portions in general and relevant distinctions between both species were hardly recognizable. 8. In the epicotyl cuttings, root primordia originated mainly in leaf traces in connection with cambial and phloems or callus tissues itself. In the hypocotyl cuttings, interfascicular parenchyma was the most frequent portion of the root primordia formation. The portions of root primordia had more connection with vascular cambium system, as the tissues were continuing to be developed.

  • PDF