• Title/Summary/Keyword: Korean Language Model

Search Result 1,580, Processing Time 0.034 seconds

Optimization of attention map based model for improving the usability of style transfer techniques

  • Junghye Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.31-38
    • /
    • 2023
  • Style transfer is one of deep learning-based image processing techniques that has been actively researched recently. These research efforts have led to significant improvements in the quality of result images. Style transfer is a technology that takes a content image and a style image as inputs and generates a transformed result image by applying the characteristics of the style image to the content image. It is becoming increasingly important in exploiting the diversity of digital content. To improve the usability of style transfer technology, ensuring stable performance is crucial. Recently, in the field of natural language processing, the concept of Transformers has been actively utilized. Attention maps, which forms the basis of Transformers, is also being actively applied and researched in the development of style transfer techniques. In this paper, we analyze the representative techniques SANet and AdaAttN and propose a novel attention map-based structure which can generate improved style transfer results. The results demonstrate that the proposed technique effectively preserves the structure of the content image while applying the characteristics of the style image.

Artificial intelligence application UX/UI study for language learning of children with articulation disorder (조음장애 아동의 언어학습을 위한 인공지능 애플리케이션 UX/UI 연구)

  • Yang, Eun-mi;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.174-176
    • /
    • 2022
  • In this paper, we present a mobile application for 'personalized customized learning' for children with articulation disorders using an artificial intelligence (AI) algorithm. A dataset (Data Set) to analyze, judge, and predict the learner's articulation situation and degree. In particular, we designed a prototype model by looking at how AI can be improved and advanced compared to existing applications from the UX/UI (GUI) aspect. So far, the focus has been on visual experience, but now it is an important time to process data and provide a UX/UI (GUI) experience to users. The UX/UI (GUI) of the proposed mobile application was to be provided according to the learner's articulation level and situation by using CRNN (Convolution Recurrent Neural Network) of DeepLearning and Auto Encoder GPT-3 (Generative Pretrained Transformer). The use of artificial intelligence algorithms will provide a learning environment with a high degree of perfection to children with articulation disorders, thereby enhancing the learning effect. I hope that you do not have any fear or discomfort in conversation by improving the perfection of articulation with 'personalized and customized learning'.

  • PDF

Classification of Security Checklist Items based on Machine Learning to Manage Security Checklists Efficiently (보안 점검 목록을 효율적으로 관리하기 위한 머신러닝 기반의 보안 점검 항목 분류)

  • Hyun Kyung Park;Hyo Beom Ahn
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.75-83
    • /
    • 2022
  • NIST in the United States has developed SCAP, a protocol that enables automated inspection and management of security vulnerability using existing standards such as CVE and CPE. SCAP operates by creating a checklist using the XCCDF and OVAL languages and running the prepared checklist with the SCAP tool such as the SCAP Workbench made by OpenSCAP to return the check result. SCAP checklist files for various operating systems are shared through the NCP community, and the checklist files include ID, title, description, and inspection method for each item. However, since the inspection items are simply listed in the order in which they are written, so it is necessary to classify and manage the items by type so that the security manager can systematically manage them using the SCAP checklist file. In this study, we propose a method of extracting the description of each inspection item from the SCAP checklist file written in OVAL language, classifying the categories through a machine learning model, and outputting the SCAP check results for each classified item.

Determination of the stage and grade of periodontitis according to the current classification of periodontal and peri-implant diseases and conditions (2018) using machine learning algorithms

  • Kubra Ertas;Ihsan Pence;Melike Siseci Cesmeli;Zuhal Yetkin Ay
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.1
    • /
    • pp.38-53
    • /
    • 2023
  • Purpose: The current Classification of Periodontal and Peri-Implant Diseases and Conditions, published and disseminated in 2018, involves some difficulties and causes diagnostic conflicts due to its criteria, especially for inexperienced clinicians. The aim of this study was to design a decision system based on machine learning algorithms by using clinical measurements and radiographic images in order to determine and facilitate the staging and grading of periodontitis. Methods: In the first part of this study, machine learning models were created using the Python programming language based on clinical data from 144 individuals who presented to the Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University. In the second part, panoramic radiographic images were processed and classification was carried out with deep learning algorithms. Results: Using clinical data, the accuracy of staging with the tree algorithm reached 97.2%, while the random forest and k-nearest neighbor algorithms reached 98.6% accuracy. The best staging accuracy for processing panoramic radiographic images was provided by a hybrid network model algorithm combining the proposed ResNet50 architecture and the support vector machine algorithm. For this, the images were preprocessed, and high success was obtained, with a classification accuracy of 88.2% for staging. However, in general, it was observed that the radiographic images provided a low level of success, in terms of accuracy, for modeling the grading of periodontitis. Conclusions: The machine learning-based decision system presented herein can facilitate periodontal diagnoses despite its current limitations. Further studies are planned to optimize the algorithm and improve the results.

An Ultrasonic Vessel-Pattern Imaging Algorithm with Low Computational Complexity (낮은 연산 복잡도를 지니는 초음파 혈관 패턴 영상 알고리즘)

  • Um, Ji-Yong
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.27-35
    • /
    • 2022
  • This paper proposes an ultrasound vessel-pattern imaging algorithm with low computational complexity. The proposed imaging algorithm reconstructs blood-vessel patterns by only detecting blood flow, and can be applied to a real-time signal processing hardware that extracts an ultrasonic finger-vessel pattern. Unlike a blood-flow imaging mode of typical ultrasound medical imaging device, the proposed imaging algorithm only reconstructs a presence of blood flow as an image. That is, since the proposed algorithm does not use an I/Q demodulation and detects a presence of blood flow by accumulating an absolute value of the clutter-filter output, a structure of the algorithm is relatively simple. To verify a complexity of the proposed algorithm, a simulation model for finger vessel was implemented using Field-II program. Through the behavioral simulation, it was confirmed that the processing time of the proposed algorithm is around 54 times less than that of the typical color-flow mode. Considering the required main building blocks and the amount of computation, the proposed algorithm is simple to implement in hardware such as an FPGA and an ASIC.

A Study on Auto-Classification of Aviation Safety Data using NLP Algorithm (자연어처리 알고리즘을 이용한 위험기반 항공안전데이터 자동분류 방안 연구)

  • Sung-Hoon Yang;Young Choi;So-young Jung;Joo-hyun Ahn
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.528-535
    • /
    • 2022
  • Although the domestic aviation industry has made rapid progress with the development of aircraft manufacturing and transportation technologies, aviation safety accidents continue to occur. The supervisory agency classifies hazards and risks based on risk-based aviation safety data, identifies safety trends for each air transportation operator, and conducts pre-inspections to prevent event and accidents. However, the human classification of data described in natural language format results in different results depending on knowledge, experience, and propensity, and it takes a considerable amount of time to understand and classify the meaning of the content. Therefore, in this journal, the fine-tuned KoBERT model was machine-learned over 5,000 data to predict the classification value of new data, showing 79.2% accuracy. In addition, some of the same result prediction and failed data for similar events were errors caused by human.

A Study on Book Recovery Method Depending on Book Damage Levels Using Book Scan (북스캔을 이용한 도서 손상 단계에 따른 딥 러닝 기반 도서 복구 방법에 관한 연구)

  • Kyungho Seok;Johui Lee;Byeongchan Park;Seok-Yoon Kim;Youngmo Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.154-160
    • /
    • 2023
  • Recently, with the activation of eBook services, books are being published simultaneously as physical books and digitized eBooks. Paper books are more expensive than e-books due to printing and distribution costs, so demand for relatively inexpensive e-books is increasing. There are cases where previously published physical books cannot be digitized due to the circumstances of the publisher or author, so there is a movement among individual users to digitize books that have been published for a long time. However, existing research has only studied the advancement of the pre-processing process that can improve text recognition before applying OCR technology, and there are limitations to digitization depending on the condition of the book. Therefore, support for book digitization services depending on the condition of the physical book is needed. need. In this paper, we propose a method to support digitalization services according to the status of physical books held by book owners. Create images by scanning books and extract text information from the images through OCR. We propose a method to recover text that cannot be extracted depending on the state of the book using BERT, a natural language processing deep learning model. As a result, it was confirmed that the recovery method using BERT is superior when compared to RNN, which is widely used in recommendation technology.

  • PDF

MATERIAL MATCHING PROCESS FOR ENERGY PERFORMANCE ANALYSIS

  • Jung-Ho Yu;Ka-Ram Kim;Me-Yeon Jeon
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.213-220
    • /
    • 2011
  • In the current construction industry where various stakeholders take part, BIM Data exchange using standard format can provide a more efficient working environment for related staffs during the life-cycle of the building. Currently, the formats used to exchange the data from 3D-CAD application to structure energy analysis at the design stages are IFC, the international standard format provided by IAI, and gbXML, developed by Autodesk. However, because of insufficient data compatibility, the BIM data produced in the 3D-CAD application cannot be directly used in the energy analysis, thus there needs to be additional data entry. The reasons for this are as follows: First, an IFC file cannot contain all the data required for energy simulation. Second, architects sometimes write material names on the drawings that are not matching to those in the standard material library used in energy analysis tools. DOE-2.2 and Energy Plus are the most popular energy analysis engines. And both engines have their own material libraries. However, our investigation revealed that the two libraries are not compatible. First, the types and unit of properties were different. Second, material names used in the library and the codes of the materials were different. Furthermore, there is no material library in Korean language. Thus, by comparing the basic library of DOE-2, the most commonly used energy analysis engine worldwide, and EnergyPlus regarding construction materials; this study will analyze the material data required for energy analysis and propose a way to effectively enter these using semantic web's ontology. This study is meaningful as it enhances the objective credibility of the analysis result when analyzing the energy, and as a conceptual study on the usage of ontology in the construction industry.

  • PDF

Using ChatGPT as a proof assistant in a mathematics pathways course

  • Hyejin Park;Eric D. Manley
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.139-163
    • /
    • 2024
  • The purpose of this study is to examine the capabilities of ChatGPT as a tool for supporting students in generating mathematical arguments that can be considered proofs. To examine this, we engaged students enrolled in a mathematics pathways course in evaluating and revising their original arguments using ChatGPT feedback. Students attempted to find and prove a method for the area of a triangle given its side lengths. Instead of directly asking students to prove a formula, we asked them to explore a method to find the area of a triangle given the lengths of its sides and justify why their methods work. Students completed these ChatGPT-embedded proving activities as class homework. To investigate the capabilities of ChatGPT as a proof tutor, we used these student homework responses as data for this study. We analyzed and compared original and revised arguments students constructed with and without ChatGPT assistance. We also analyzed student-written responses about their perspectives on mathematical proof and proving and their thoughts on using ChatGPT as a proof assistant. Our analysis shows that our participants' approaches to constructing, evaluating, and revising their arguments aligned with their perspectives on proof and proving. They saw ChatGPT's evaluations of their arguments as similar to how they usually evaluate arguments of themselves and others. Mostly, they agreed with ChatGPT's suggestions to make their original arguments more proof-like. They, therefore, revised their original arguments following ChatGPT's suggestions, focusing on improving clarity, providing additional justifications, and showing the generality of their arguments. Further investigation is needed to explore how ChatGPT can be effectively used as a tool in teaching and learning mathematical proof and proof-writing.

The TANDEM Euratom project: Context, objectives and workplan

  • C. Vaglio-Gaudard;M.T. Dominguez Bautista;M. Frignani;M. Futterer;A. Goicea;E. Hanus;T. Hollands;C. Lombardo;S. Lorenzi;J. Miss;G. Pavel;A. Pucciarelli;M. Ricotti;A. Ruby;C. Schneidesch;S. Sholomitsky;G. Simonini;V. Tulkki;K. Varri;L. Zezula;N. Wessberg
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.993-1001
    • /
    • 2024
  • The TANDEM project is a European initiative funded under the EURATOM program. The project started on September 2022 and has a duration of 36 months. TANDEM stands for Small Modular ReacTor for a European sAfe aNd Decarbonized Energy Mix. Small Modular Reactors (SMRs) can be hybridized with other energy sources, storage systems and energy conversion applications to provide electricity, heat and hydrogen. Hybrid energy systems have the potential to strongly contribute to the energy decarbonization targeting carbon-neutrality in Europe by 2050. However, the integration of nuclear reactors, particularly SMRs, in hybrid energy systems, is a new R&D topic to be investigated. In this context, the TANDEM project aims to develop assessments and tools to facilitate the safe and efficient integration of SMRs into low-carbon hybrid energy systems. An open-source "TANDEM" model library of hybrid system components will be developed in Modelica language which, by coupling, will extend the capabilities of existing tools implemented in the project. The project proposes to specifically address the safety issues of SMRs related to their integration into hybrid energy systems, involving specific interactions between SMRs and the rest of the hybrid systems; new initiating events may have to be considered in the safety approach. TANDEM will study two hybrid systems covering the main trends of the European energy policy and market evolution at 2035's horizon: a district heating network and power supply in a large urban area, and an energy hub serving energy conversion systems, including hydrogen production; the energy hub is inspired from a harbor-like infrastructure. TANDEM will provide assessments on SMR safety, hybrid system operationality and techno-economics. Societal considerations will also be encased by analyzing European citizen engagement in SMR technology safety.