본 연구는 한국어 음성-텍스트 데이터에서 보편적으로 나타난 휴지의 실현 양상을 분석하고, 이를 토대로 데이터셋을 선별해 보편적이고 규격화된 한국어 휴지 예측을 위한 모델을 제안하였다. 이를 위해 전문적인 발성 훈련을 받은 성우 등의 발화가 녹음된 음성-텍스트 데이터셋을 수집하고 MFA와 같은 음소 정렬기를 사용해 휴지를 라벨링하는 등의 전처리를 하고, 다양한 화자의 발화에서 공통적으로 나타난 휴지를 선별해 학습데이터셋을 구축하였다. 구축된 데이터셋을 바탕으로 LLM 중 하나인 KULLM 모델을 미세 조정하고 제안한 모델의 휴지 예측 성능을 평가하였다.
초고속 인터넷의 발달로 멀티미디어 수화 콘텐츠가 청각장애인의 수화교육에 활용되고 있다. 수화교육에서 사용되는 대부분 콘텐츠는 한글단어에 대한 수화표현을 수화동영상으로 보여주는 내용이다. 수화를 처음 배우거나, 수화에 익숙하지 않은 사용자들은 수화특성을 이해하기 어렵고, 수화표현에 어려움을 나타내고 있다. 본 논문에서는 온라인에서 수화표현을 학습하기 위해서 수화가 가지고 있는 특성을 참고하고, Semantic Logic을 적용한 멀티미디어 동영상기반의 수화 콘텐츠 모형에 대한 플랫폼 설계를 연구하고자 한다.
GPM(Generic Product Model)은 원자력 플랜트의 라이프 사이클 데이터를 통합, 공유하기 위하여 일본의 Hitachi에서 개발한 공통 데이터 모델이다. GPM은 추상 모델 성격의 GPM 핵심 모델과 핵심 모델의 기술을 위한 구현 언어 그리고 구현 언어로 작성된 참조 라이브러리로 구성되어 있다. GPM 핵심 모델은 객체들 사이의 의미가 부여된 관계 정의를 통하여 객체 의미 관계 네트워크 모델을 구성할 수 있는 특성이 있다. 초기의 GPM은 GPM 핵심 모델의 특성을 반영한 신택스의 GPML이라는 구현 언어를 개발하여 제공하였으나 원자력 플랜트 라이프 사이클동안 다양한 목적으로 GPM 데이터 모델에 접근하는 이기종 애플리케이션들과의 상호운용성을 위하여 XML을 기반으로 하는 GPM-XML로 교체되었다. 그러나 현재 GPM-XML을 사용하여 구축한 GPM 데이터 모델이 객체 의미 관계 네트워크 모델로서 활용되기 위한 GPM-XML 기반의 연구가 미비한 상태이다. 따라서 본 논문에서는 객체 의미 관계 네트워크와 유사한 성격의 온톨로지를 기술할 수 있으며 이를 지원하는 기술 표준 및 도구들이 이미 활용 가능한 수준에 있는 OWL을 GPM 핵심 모델을 위한 구현 언어로서 제안한다. OWL은 XML 기반의 RDF/XML 형식으로 기술될 수 있으므로 상호운용성 또한 보장받을 수 있다. 본 논문은 OWL의 세 가지 하위 언어 사양 중 추론기능을 완벽히 제공받을 수 있는 가운데 문법적 제약이 가장 덜 엄격한 OWL DL을 사용한다. 본 논문은 OWL DL을 GPM 핵심 모델의 구현 언어로서 사용하기 위하여 GPM과 OWL 두 모델 사이의 차이점을 도출한 후 이를 해소할 수 있는 방법을 제안하며 이 방법을 적용하여 GPML로 작성된 참조 라이브러리를 OWL DL 기반의 온톨로지로 변환하여 구축하는 방법을 기술한다.
한국언어정보학회 2002년도 Language, Information, and Computation Proceedings of The 16th Pacific Asia Conference
/
pp.411-420
/
2002
The left-associative grammar model (LAG) has been applied successfully to the morphologic and syntactic analysis of various european and asian languages. The algebraic definition of the LAG is very well suited for the application to natural language processing as it inherently obeys de Saussure's second law (de Saussure, 1913, p. 103) on the linear nature of language, which phrase-structure grammar (PSG) and categorial grammar (CG) do not. This paper describes the so-called Loom-LAGs (LLAG) -a specialization of LAGs for the analysis of natural language. Whereas the only means of language-independent abstraction in ordinary LAG is the principle of possible continuations, LLAGs introduce a set of more detailed language-independent generalizations that form the so-called loom of a Loom-LAG. Every LLAG uses the very smut loom and adds the language-specific information in the form of a declarative description of the language -much like an ancient mechanised Jacquard-loom would take a program-card providing the specific pattern for the cloth to be woven. The linguistic information is formulated declaratively in so-called syntax plans that describe the sequential structure of clauses and phrases. This approach introduces the explicit notion of phrases and sentence structure to LAG without violating de Saussure's second law iud without leaving the ground of the original algebraic definition of LAG, LLAGS can in fact be shown to be just a notational variant of LAG -but one that is much better suited for the manual development of syntax grammars for the robust analysis of free texts.
본 연구는 지금까지 제안된 거대언어모델 가운데 LLaMA 및 LLaMA 기반 모델과 같이 연구데이터를 주요 사전학습데이터로 활용한 모델의 데이터 품질에 중점을 두어 현재의 평가 기준을 분석하고 연구데이터의 관점에서 품질 평가 기준을 제안하였다. 이를 위해 데이터 품질 평가 요인 중 유효성, 기능성, 신뢰성을 중심으로 품질 평가를 논의하였으며, 거대언어모델의 특성 및 한계점을 이해하기 위해 LLaMA, Alpaca, Vicuna, ChatGPT 모델을 비교하였다. 현재 광범위하게 활용되는 거대언어모델의 평가 기준을 분석하기 위해 Holistic Evaluation for Language Models를 중심으로 평가 기준을 살펴본 후 한계점을 논의하였다. 이를 바탕으로 본 연구는 연구데이터를 주요 사전학습데이터로 활용한 거대언어모델을 대상으로 한 품질 평가 기준을 제시하고 추후 개발 방향을 논의하였으며, 이는 거대언어모델의 발전 방향을 위한 지식 기반을 제공하는데 의의를 갖는다.
본 논문에서는 착용식 추적장치나 표식 등의 보조 도구를 사용하지 않는 환경의 동영상 데이터로부터 수화 패턴을 인식하는 방법론에 관하여 고찰한다. 시스템 설계 및 구현에 관한 주제로서 특징점의 추출기법, 특징데이터의 표현기법 및 패턴 분류기법에 관한 방법론을 제시하고 그 유용성을 고찰한다. 일련의 동영상으로 표현되는 수화패턴에 대하여 특징점의 공간적 위치에 대한 변이 뿐만 아니라 시간차원의 변화를 고려한 특징데이터의 표현방법을 제시하며, 방대한 데이터에 의한 분류기의 크기 문제와 계산량의 문제를 개선하기 위하여 효과적으로 특징수를 줄일 수 있는 특징추출 방법을 소개한다. 패턴 분류과정에서 점진적 학습(incremental learning)이 가능한 신경망 모델을 제시하고 그 동작특성 및 학습효과를 분석한다. 또한 학습된 분류모델로부터 특징과 패턴 클래스 간의 상대적 연관성 척도를 정의하고, 이로부터 효과적인 특징을 선별하여 성능저하 없이 분류기의 규모를 최적화 할 수 있음을 보인다. 제안된 내용에 대하여 여섯 가지 수화패턴을 대상으로 적용한 실험을 통하여 유용성을 평가한다.
인공지능 기술의 비약적 발전과 함께 사람의 언어를 다루는 자연어 처리 분야 역시 활발하게 연구가 진행되고 있다. 특히 최근에는 구글에서 공개한 언어 모델인 BERT는 대량의 코퍼스를 활용해 미리 학습시킨 모델을 제공함으로써 자연어 처리의 여러 분야에서 좋은 성능을 보이고 있다. BERT에서 다국어 모델을 지원하고 있지만 한국어에 바로 적용했을 때는 한계점이 존재하기 때문에 대량의 한국어 코퍼스를 이용해 학습시킨 모델을 사용해야 한다. 또한 텍스트는 어휘, 문법적인 의미만 담고 있는 것이 아니라 전후 관계, 상황과 같은 문맥적인 의미도 담고 있다. 기존의 자연어 처리 분야에서는 어휘나 문법적인 의미를 중심으로 연구가 주로 이루어졌다. 텍스트에 내재되어 있는 문맥 정보의 정확한 파악은 맥락을 이해하는 데에 있어 중요한 역할을 한다. 단어들의 관계를 이용해 연결한 지식그래프는 컴퓨터에게 쉽게 문맥을 학습시킬 수 있는 장점이 있다. 본 논문에서는 한국어 코퍼스를 이용해 사전 학습된 BERT 모델과 지식 그래프를 이용해 한국어 문맥 정보를 추출하는 시스템을 제안하고자 한다. 텍스트에서 중요한 요소가 되는 인물, 관계, 감정, 공간, 시간 정보를 추출할 수 있는 모델을 구축하고 제안한 시스템을 실험을 통해 검증한다.
본 논문은 연속 밀도 함수를 갖는 HMM별 한국어 연속 음성인식에 관한 연구이다. 여기서 우리는 밀도 함수가 2개에서 44개까지 갖는 연속 HMM모델에서 가장 효율적인 연속 음성인식을 위한 방법을 제시한다. 음성 모델은 36개로 구성한 기본음소를 사용한 CI-Model과 3,000개로 구성한 확장음소를 사용한 CD-Model을 사용하였고, 언어 모델은 N-gram을 이용하여 처리하였다. 이 방법을 사용하여 500개의 문장과 6,486개의 단어에 대하여 화자 독립으로 CI Model에서 최고 94.4%의 단어인식률과 64.6%의 문장인식률을 얻었고, CD Model에서는98.2%의 단어인식률과 73.6%의 문장인식률을 안정적으로 얻었다.
The purpose of this study is to summarize PWIM (Picture Words Inductive Model) which is one of learner-centered vocabulary teaching-learning models, and suggest ways to implement them in Korean language education. The pictures that are used in the Korean language education field help visualize the specific shape, color, and texture of the vocabulary that is the learning target; thus, helping beginner learners to recognize the meaning of the sound. Visual material stimulates the intrinsic schema of the learner and not only becomes a 'bridge' connecting the mother tongue and the Korean language, but also reduces difficulty in learning a foreign language because of the ambiguity between meaning and sound in Korean and all languages. PWIM shows commonality with existing learning methods in that it uses visual materials. However, in the past, the teacher-centered learning method has only imitated the teacher because the teacher showed a piece-wise, out-of-life photograph and taught the word. PWIM is a learner-centered learning method that stimulates learners to find vocabulary on their own by presenting visual information reflecting the context. In this paper, PWIM is more suitable for beginner learners who are learning specific concrete vocabulary such as personal identity (mainly objects), residence and environment, daily life, shopping, health, climate, and traffic. The purpose of this study was to develop a method of using PWIM suitable for Korean language learners and teaching procedures. The researchers rearranged the previous research into three steps: brainstorming and word organization, generalization of semantic and morphological rules of extracted words, and application of words. In the case of PWIM, you can go through all three steps at once. Otherwise, it is possible to divide the three steps of PWIM and teach at different times. It is expected that teachers and learners using the PWIM teaching-learning method, which uses realistic visual materials, will enable making an effective class together.
본 논문은 GPT-3.5 및 GPT-4와 같은 대규모 언어 모델의 한국어 감성 분석 성능을 ChatGPT API를 활용한 zero-shot 방법으로 평가하고, 이를 KoBERT와 같은 사전 학습된 한국어 모델들과 비교한다. 실험을 통해 영화, 게임, 쇼핑 등 다양한 분야의 한국어 감성 분석 데이터셋을 사용하여 모델들의 효율성을 검증한다. 실험 결과, LMKor-ELECTRA 모델이 F1-score 기준으로 가장 높은 성능을 보여주었으며, GPT-4는 특히 영화 및 쇼핑 데이터셋에서 높은 정확도와 F1-score를 기록하였다. 이는 zero-shot 학습 방식의 대규모 언어 모델이 특정 데이터셋에 대한 사전 학습 없이도 한국어 감성 분석에서 높은 성능을 발휘할 수 있음을 시사한다. 그러나 일부 데이터셋에서의 상대적으로 낮은 성능은 zero-shot 기반 방법론의 한계점으로 지적될 수 있다. 본 연구는 대규모 언어 모델의 한국어 감성 분석 활용 가능성을 탐구하며, 이 분야의 향후 연구 방향에 중요한 시사점을 제공한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.