• Title/Summary/Keyword: Korean Journal of Remote Sensing

Search Result 3,006, Processing Time 0.029 seconds

A Progress Status of Remote Sensing in the Korean Meteorological Society (한국기상학회 원격탐사 분야 학술 발전 현황)

  • Myoung-Hwan Ahn;Jhoon Kim;GyuWon Lee;Sang-Woo Kim
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.197-222
    • /
    • 2023
  • Remote sensing becomes a new and core framework for the atmospheric sciences and closely related areas concerning with the ever-changing global environmental status. However, remote sensing in the Korea Meteorological Society is relatively new, where the first relevant paper is appeared in 1983, as well as is an area with relatively limited number of research groups. Here, we review and summarize some of the key progress in this area within Korea Meteorological Society focusing on the areas of satellite, radar, and ground based remote sensing such as lidar, spectrometer and sun photometer. Overall, the area is shown to have the most significant progress occur along with the acquisition of the key infra structures such as the COMS (Communication, Ocean and Meteorological Satellite) and S-band radar system led by Korea Meteorological Administration in early 2000. After that, the area has quickly developed into a status playing important roles to lead and support the overall activities in the atmospheric measurements. It is expected that the importance and role of the remote sensing will increase in the coming years.

RETRACTED: Design of LEO Constellations with Inter-Satellite Connects Based on the Performance Evaluation of the Three Constellations SpaceX, OneWeb and Telesat

  • Peng Zong;Saeid Kohani
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.317-317
    • /
    • 2024
  • Notice: This article has been retracted as a result of the review (on May 14, 2024) by the Research Ethics Committee of the Korean Society of Remote Sensing, which confirmed research misconduct (plagiarism). The Korean Journal of Remote Sensing (KJRS) Editorial Office received a report alleging plagiarism in a paper published in KJRS authored by Zong and Kohani (2021). Following a thorough investigation by our Research Ethics Committee, we found significant similarities between the original paper (Lee and Mortari, 2017) and the paper (Zong and Kohani, 2021) published in KJRS. The scope of the plagiarism included a number of identical figures, tables, and equations, as well as textual content. As a result, the Research Ethics Committee of the Korean Society of Remote Sensing has decided to retract the paper (Zong and Kohani. 2021) for deliberately using the ideas, research content, and results of others without proper approval or citation. To preserve academic integrity, we take responsibility for enforcing ethical policies and proceeding with the follow-up actions: 1. Disclosure and preservation of the facts and reasons for the retraction of the plagiarized paper, 2. Prohibition of submissions for the next three years for the authors of the plagiarized paper, 3. Notification to the authors’ affiliated institution of the retraction of the plagiarized paper. We deeply regret to report for retraction of the article and apologize to the readers of KJRS and to the authors of the original work for any inconvenience caused.

[Retracted]Design of LEO Constellations with Inter-satellite Connects Based on the Performance Evaluation of the Three Constellations SpaceX, OneWeb and Telesat

  • Zong, Peng;Kohani, Saeid
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.23-40
    • /
    • 2021
  • This article has been retracted as a result of the review (on May 14, 2024) by the Research Ethics Committee of the Korean Society of Remote Sensing, which confirmed research misconduct (plagiarism).

A Review on Remote Sensing Techniques and Case Studies for Active Fault Investigation (활성단층 조사에 활용되는 원격탐사 기술과 사례의 고찰)

  • Gwon, Ohsang;Son, Hyorok;Bae, Sangyeol;Park, Kiwoong;Choi, Ho-Seok;Kim, Young-Seog;Lee, Seoung-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1901-1922
    • /
    • 2021
  • Since most large earthquakes occur by reactivation of preexisting active faults, it is important to understand the locations and characteristics of active faults in terms of earthquake hazard research and earthquake disaster prevention. Recently, several remote sensing techniques are broadly used for lineament analysis performed prior to field surveys in active fault surveys. The aim of this paper is introducing simple principles and application examples of each remote sensing technique (satellite remote sensing, airborne remote sensing, InSAR, LiDAR) widely used for active fault investigation. This paper also explains the analytical methods for the slope break generated by fault activity based on GIS and the horizontal displacement of the strike-slip fault. In discussion, we would like to discuss the problems and solutions on making DEM based on aerial photography, and a new developed technique (RRIM) to overcome the problems of DEM based on aerial LiDAR. Understanding remote sensing techniques used for active fault investigation and utilizing appropriate methods depending on the situation and limitations of each remote sensing technique are important for effective active fault investigation.

Development of Android Smart Phone App for Analysis of Remote Sensing Images (위성영상정보 분석을 위한 안드로이드 스마트폰 앱 개발)

  • Kang, Sang-Goo;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.561-570
    • /
    • 2010
  • The purpose of this study is to develop an Android smartphone app providing analysis capabilities of remote sensing images, by using mobile browsing open sources of gvSIG, open source remote sensing software of OTB and open source DBMS of PostgreSQL. In this app, five kinds of remote sensing algorithms for filtering, segmentation, or classification are implemented, and the processed results are also stored and managed in image database to retrieve. Smartphone users can easily use their functions through graphical user interfaces of app which are internally linked to application server for image analysis processing and external DBMS. As well, a practical tiling method for smartphone environments is implemented to reduce delay time between user's requests and its processing server responses. Till now, most apps for remotely sensed image data sets are mainly concerned to image visualization, distinguished from this approach providing analysis capabilities. As the smartphone apps with remote sensing analysis functions for general users and experts are widely utilizing, remote sensing images are regarded as information resources being capable of producing actual mobile contents, not potential resources. It is expected that this study could trigger off the technological progresses and other unique attempts to develop the variety of smartphone apps for remote sensing images.

Environmental Monitoring and Forecasting Using Advanced Remote Sensing Approaches (최신 원격탐사 기법을 이용한 지구환경 모니터링 및 예측)

  • Seonyoung Park;Ahram Song;Yangwon Lee;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.885-890
    • /
    • 2023
  • As satellite technology progresses, a growing number of satellites-like CubeSat and radar satellites-are available with a higher spectral and spatial resolutions than previous. National initiatives used to be the main force behind satellite development, but current trendsindicate that private enterprises are also actively exploring and developing new satellite technologies. This special issue examines the recent research results and advanced technology in remote sensing approaches for Earth environment analysis. These results provide important information for the development of satellite sensors in the future and are of great interest to researchers working with artificial intelligence in thisfield. The special issue introduces the latest advances in remote sensing technology and highlights studies that make use of data to monitor and forecast Earth's environment. The objective is to provide direction for the future of remote sensing research.

A Perspective on the Electromagnetic Imaging of Aircrafts (비행체의 전자파 영상화 기술동향)

  • 윤용수;이재천
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.167-175
    • /
    • 1999
  • So far, the remote sensing technology has widely been used in a variety of application areas such as military, medical imaging, environment, geology and so forth. The microwave remote sensing uses the wavelengths ranging from around one centimeter up to a few tens of centimeters and is known to be very effective regardless of the weather conditions and the day/night time as compared with the reflective InfraRed (IR) remote sensing or the thermal IR remote sensing. There are three generic modes of synthetic aperture radar imaging systems depending on its application, that is, stripmap mode, spotlight mode, or inverse mode. In this article we focus on the issue of imaging of flying aircrafts for the inverse mode of a ground - based, fixed radar with moving objects. The imaging of flying aircrafts is considered to be an important step for the automatic target recognition systems, and therefore a great deal of efforts have recently been made on the subject. Here we review the three representative methods including the Fourier transform processing, the time - frequency processing, and the reconstruction from the projection. Some relative merits and drawbacks are also discussed.

Perspectives on the Applicatio of Remote Sensing for Observation of Ocean Environments (해양환경관측을 위한 원격탐사의 활용과 그 전망)

  • 유신재;정종철
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.277-288
    • /
    • 1999
  • The aim of this review is to provide perspectives on the application of remote sensing techniques for observation of marine environmental changes on various spatio-temporal scales. Currently available remote sensing technologies are reviewed and future direction is suggested. For better utilization of remote sensing, a comprehensive plan should be developed by a demand-side and problem-solving approach. Marine environmental changes should be observed on proper spatio-temporal scales where the processes occur. For appropriate observation and monitoring of various environmental changes in coastal regions, more sensors must be utilized. Platforms other than satellites should also be utilized to expand the spatio-temporal scales of observation. Calibration/validation activities, required for accurate interpretation of remotely sensed data, could utilize buoys and ship-of-opportunity sensors. It is desirable that such systems by developed as a part of an integrated monitoring network.

InSAR Studies of Alaska Volcanoes

  • Lu Zhong;Wicks Chuck;Dzurisin Dan;Power John
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.59-72
    • /
    • 2005
  • Interferometric synthetic aperture radar (InSAR) is a remote sensing technique capable of measuring ground surface deformation with sub-centimeter precision and spatial resolution in tens-of­meters over a large region. This paper describes basics of InSAR and highlights our studies of Alaskan volcanoes with InSAR images acquired from European ERS-l and ERS-2, Canadian Radarsat-l, and Japanese JERS-l satellites.