• Title/Summary/Keyword: Korean Journal of Remote Sensing

Search Result 3,006, Processing Time 0.024 seconds

Thermal Infrared Remote Sensing Data Utilization for Urban Heat Island and Urban Planning Studies

  • Lee, Hye Kyung
    • Journal of KIBIM
    • /
    • v.7 no.2
    • /
    • pp.36-43
    • /
    • 2017
  • Population growth and rapid urbanization has been converting large amounts of rural vegetation into urbanized areas. This human induced change has increased temperature in urban areas in comparison to adjacent rural regions. Various studies regarding to urban heat island have been conducted in different disciplines in order to analyze the environmental issue. Especially, different types of thermal infrared remote sensing data are applied to urban heat island research. This article reviews research focusing on thermal infrared remote sensing for urban heat island and urban planning studies. Seven studies of analyses for the relationships between urban heat island and other dependent indicators in urban planning discipline are reviewed. Despite of different types of thermal infrared remote sensing data, units of analysis, land use and land cover, and other dependent variable, each study results in meaningful outputs which can be implemented in urban planning strategies. As the application of thermal infrared remote sensing data is critical to measure urban heat island, it is important to understand its advantages and disadvantages for better analyses of urban heat island based on this review. Despite of its limitations - spatial resolution, overpass time, and revisiting cycle, it is meaningful to conduct future research on urban heat island with thermal infrared remote sensing data as well as its application to urban planning disciplines. Based on the results from this review, future research with remotely sensed data of urban heat island and urban planning could be modified and better results and mitigation strategies could be developed.

Determining Canopy Growth Conditions of Paddy Rice via Ground-based Remote Sensing

  • Jo, Seunghyun;Yeom, Jongmin;Ko, Jonghan
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.1
    • /
    • pp.11-20
    • /
    • 2015
  • This study aimed to investigate the canopy growth conditions and the accuracy of phenological stages of paddy rice using ground-based remote sensing data. Plant growth variables including Leaf Area Index (LAI) and canopy reflectance of paddy rice were measured at the experimental fields of Chonnam National University, Gwangju, Republic of Korea during the crop seasons of 2011, 2012, and 2013. LAI values were also determined based on correlations with Vegetation Indices (VIs) obtained from the canopy reflectance. Three phenological stages (tillering, booting, and grain filling) of paddy rice could be identified using VIs and a spatial index (NIR versus red). We found that exponential relationships could be applied between LAI and the VIs of interest. This information, as well as the relationships between LAI and VIs obtained in the present study, could be used to estimate and monitor the relative growth and development of rice canopies during the growing season.

Support Vector Machine and Spectral Angle Mapper Classifications of High Resolution Hyper Spectral Aerial Image

  • Enkhbaatar, Lkhagva;Jayakumar, S.;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.233-242
    • /
    • 2009
  • This paper presents two different types of supervised classifiers such as support vector machine (SVM) and spectral angle mapper (SAM). The Compact Airborne Spectrographic Imager (CASI) high resolution aerial image was classified with the above two classifier. The image was classified into eight land use /land cover classes. Accuracy assessment and Kappa statistics were estimated for SVM and SAM separately. The overall classification accuracy and Kappa statistics value of the SAM were 69.0% and 0.62 respectively, which were higher than those of SVM (62.5%, 0.54).

Integrating Spatial Proximity with Manifold Learning for Hyperspectral Data

  • Kim, Won-Kook;Crawford, Melba M.;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.693-703
    • /
    • 2010
  • High spectral resolution of hyperspectral data enables analysis of complex natural phenomena that is reflected on the data nonlinearly. Although many manifold learning methods have been developed for such problems, most methods do not consider the spatial correlation between samples that is inherent and useful in remote sensing data. We propose a manifold learning method which directly combines the spatial proximity and the spectral similarity through kernel PCA framework. A gain factor caused by spatial proximity is first modelled with a heat kernel, and is added to the original similarity computed from the spectral values of a pair of samples. Parameters are tuned with intelligent grid search (IGS) method for the derived manifold coordinates to achieve optimal classification accuracies. Of particular interest is its performance with small training size, because labelled samples are usually scarce due to its high acquisition cost. The proposed spatial kernel PCA (KPCA) is compared with PCA in terms of classification accuracy with the nearest-neighbourhood classification method.

Precision Forestry Using Remote Sensing Techniques: Opportunities and Limitations of Remote Sensing Application in Forestry (원격탐사 기술의 국내 정밀 임업 가능성 검토: 임업분야의 원격탐사 적용사례 분석을 중심으로)

  • Woo, Heesung;Cho, Seungwan;Jung, Geonhwi;Park, Joowon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1067-1082
    • /
    • 2019
  • This review paper presents a review of evidence on systems and technologies for recent remote sensing techniques which were applied into forest and forest related sectors. The paper reviewed remote sensing techniques that will have, or already having, a substantial impact on improving data quality of forest inventory and forest management and planning. The aim of this review is to identify, categorize and discuss Korean and international sources published primarily in the last decades. The focus on remote sensing and ICT technologies examines issues related to their opportunities, limitation, use and impact on the forestry. More specifically, this literature review has focused on laser scanning, satellite imagery, and Unmanned aerial vehicles (UAV) utilization in forest management and inventory analysis.

Disaster Prediction, Monitoring, and Response Using Remote Sensing and GIS (원격탐사와 GIS를 이용한 재난 예측, 감시 및 대응)

  • Kim, Junwoo;Kim, Duk-jin;Sohn, Hong-Gyoo;Choi, Jinmu;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.661-667
    • /
    • 2022
  • As remote sensing and GIS have been considered to be essential technologies for disasters information production, researches on developing methods for analyzing spatial data, and developing new technologies for such purposes, have been actively conducted. Especially, it is assumed that the use of remote sensing and GIS for disaster management will continue to develop thanks to the launch of recent satellite constellations, the use of various remote sensing platforms, the improvement of acquired data processing and storage capacity, and the advancement of artificial intelligence technology. This spatial issue presents 10 research papers regarding ship detection, building information extraction, ocean environment monitoring, flood monitoring, forest fire detection, and decision making using remote sensing and GIS technologies, which can be applied at the disaster prediction, monitoring and response stages. It is anticipated that the papers published in this special issue could be a valuable reference for developing technologies for disaster management and academic advancement of related fields.

Utilization of Remote Sensing and GIS in Aggregate Control of Urban Impervious Coverage (도시의 불투수면 총량규제에서 원격탐사와 GIS의 활용)

  • Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.5
    • /
    • pp.263-276
    • /
    • 2004
  • This research is primarily intended to propose a new concept for aggregate control of impervious coverage using remote sensing and GIS. An empirical study for a case study site was conducted to demonstrate how a standard remote sensing and GIS technology can be used to assist in implementing the aggregate control for impervious coverage as intermediary between decision makers and scientists. Guidelines for a replicable methodology are presented to provide a strong theoretical basis for the standardization of factors involved in the aggregate control; the meaningful definition of land mosaic in terms of pervious areas, classification of pervious intensity, change detection for pervious areas. Detailed visual maps (e.g. estimation of impervious surface allowable) can be generated over large areas quickly and easily to increase the scientific and objective decision-making for the aggregate control. It is anticipated that this research output could be used as a valuable reference to confirm the potential of remote sensing and GIS in the aggregate control for impervious coverage.

Preliminary Study for an Application to Environmental Impact Assessment of Remote Sensing Data (원격탐사자료의 환경영향평가 활용을 위한 기초연구)

  • Mun, Hyun-Saing;Kim, Myung-Jin;Kang, In-Goo;Bang, Kyu-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.1
    • /
    • pp.59-64
    • /
    • 1995
  • Environmental Impact Assesment(EIA) is composed of various procedures, such as screening, scoping, inventory survey, prediction, assessment, mitigation measure, alternative assessment, and post management. Remote sensing introduced lately begins to be applied ecosystem and land use in inventory survey and assessment of EIA. This study explains on land use classification, buffering analysis of residential area, and overlaying analysis of odor predictive data with residential area for application to EIA with remote sensing data. Residential area extracted from land use classification of remote sensing provides effectively buffering analysis of residential area in selection of landfill site with GIS. It could assess also residential effect to an offensive odor by overlaying analysis. Application methods in EIA should be enlarged to assess effectively.

  • PDF

An Object-Level Feature Representation Model for the Multi-target Retrieval of Remote Sensing Images

  • Zeng, Zhi;Du, Zhenhong;Liu, Renyi
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.65-77
    • /
    • 2014
  • To address the problem of multi-target retrieval (MTR) of remote sensing images, this study proposes a new object-level feature representation model. The model provides an enhanced application image representation that improves the efficiency of MTR. Generating the model in our scheme includes processes, such as object-oriented image segmentation, feature parameter calculation, and symbolic image database construction. The proposed model uses the spatial representation method of the extended nine-direction lower-triangular (9DLT) matrix to combine spatial relationships among objects, and organizes the image features according to MPEG-7 standards. A similarity metric method is proposed that improves the precision of similarity retrieval. Our method provides a trade-off strategy that supports flexible matching on the target features, or the spatial relationship between the query target and the image database. We implement this retrieval framework on a dataset of remote sensing images. Experimental results show that the proposed model achieves competitive and high-retrieval precision.

Deep Learning for Remote Sensing Applications (원격탐사활용을 위한 딥러닝기술)

  • Lee, Moung-Jin;Lee, Won-Jin;Lee, Seung-Kuk;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1581-1587
    • /
    • 2022
  • Recently, deep learning has become more important in remote sensing data processing. Huge amounts of data for artificial intelligence (AI) has been designed and built to develop new technologies for remote sensing, and AI models have been learned by the AI training dataset. Artificial intelligence models have developed rapidly, and model accuracy is increasing accordingly. However, there are variations in the model accuracy depending on the person who trains the AI model. Eventually, experts who can train AI models well are required more and more. Moreover, the deep learning technique enables us to automate methods for remote sensing applications. Methods having the performance of less than about 60% in the past are now over 90% and entering about 100%. In this special issue, thirteen papers on how deep learning techniques are used for remote sensing applications will be introduced.