• Title/Summary/Keyword: Korean High-Speed Train

Search Result 1,678, Processing Time 0.028 seconds

Analysis of Dynamic Behavior of the High Speed Train by External Force due to the Gust (동적거동 관점에서의 돌풍에 대한 고속전철 운행속도 영향 연구)

  • Park, C.K.;Kim, Y.G.;Choe, K.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.495-500
    • /
    • 2001
  • The dynamic behavior of high speed train is very important because it should be safe and is satisfied with the ride comfort of passengers. The railway is composed of many suspension components-1st springs, 1st dampers, 2nd springs, 2nd dampers etc- that have an influence on the dynamic characteristics of high speed train. Also, the wheel/rail shapes, the track condition and geometry and many environmental factors-rain, snow, wind etc-are affected the dynamic behavior of high speed train. This paper is reviewed the effect of wind(gust) on the dynamic behavior of high speed train. Vampire program is used for this simulation. The result of simulation shows that high speed train should not be operated when the gust speed is beyond 34.5m/sec.

  • PDF

Train Performance Simulation and Evaluation for Korea High Speed Train (한국형 고속전철 개발열차 열차성능해석 및 평가)

  • 이태형;박춘수;신중린
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.120-124
    • /
    • 2004
  • Computer aided simulation is an essential part in planning, design, and operation of railway systems. To determine the adequate performance and specification of railway system, it is necessary to calculate train performances such as distance, speed, power during train's running. This paper presents result of train performance simulation using the program that developed for Korea high speed train. To verify result of simulation, we have compared that with experiment data.

The Conceptual Design of Korea High Speed Train System (한국형 고속전철 차량시스템의 개념설계)

  • 김경택;정경렬
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.172-180
    • /
    • 1999
  • The major subject of this paper is to develop the concept fur a Korea high speed train system and recommend to train configuration. High speed train configurations are basically concerned traction power(train configurations with concentrated; CPT or distributed Power system: DPT) and train design(single car as compared with articulated bogies). The result of configuration, a advantages and disadvantaged were necessitated by different train configurations; -distributed underfloor power have an increased length for the seats by 15% as compared with the concentrated power trait - articulated trainsets are characterised by less of number of bogies and reduced values of mass, train resistance, noise and vibration. from the result, the optimized train concept combining high seat capacity per train length with low weight and train resistance is 400m long, single -floor train composed of two symmetrically arranged half trainsets. Therefore, at this work recommended distributed train system However, the final decision of Korea high speed train configuration was concentrated power train and articulated bogie system. The configuration of trainset was 20cars included 2 power cars, 4 motorized cars and 14 trailer cars.

  • PDF

Numerical Simulation of the Unsteady Flow Field Induced by a High-speed Train Passing through a Tunnel (터널을 통과하는 고속철도차량에 의해 형성되는 비정상 유동장의 수치해석)

  • 권혁빈;이동호;김문상
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.4
    • /
    • pp.229-236
    • /
    • 2000
  • In this study, the unsteady flow field induced by a high-speed train passing through a tunnel is numerically simulated by using an axi-symmetric Euler Equation. The modified patched grid scheme applied to a structured grid system was used to handle the relative motion of a train. The hybrid-dimensional approach which mixed 1D and axi-symmetric dimension was used to reduce the computation time and memory storage. By employing the hybrid-dimensional approach, a long tunnel as much as 5 km was able to be simulated efficiently. The results show that the maximum pressure rise in the tunnel by the entrance of the train is a function of both train speed and train-tunnel cross-sectional area ratio. The unsteady pressure fluctuation in the tunnel and around the train was also investigated in the real condition; Korean high-speed train on the Seoul-Pusan line.

  • PDF

Variation Trends of the Contact Force between Pantograph-Catenary and Acceleration Behavior According to the Train Running Speed and Driving Pattern in Korean High Speed Train (열차의 운행패턴과 속도에 따른 한국형 고속전철용 판토그라프의 접촉력과 가속도 거동의 변화 경향)

  • 목진용;김영국;박춘수;김기환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.200-205
    • /
    • 2004
  • The pantograph for Korean High Speed Train was developed and had been evaluating by through 'G7-R&D project for home grown high speed train technology' In this study, in mechanical aspect, the variation trend of contact force between pantograph and catenary according to the train running speed and driving pattern is conducted. A measuring system for current collecting performance and mechanical characteristics is used for this study, developed and installed on the prototype Korean High Speed Train, and physical characteristics were measured while the KHST runs on the test track. Through this study, remarkable trends of variation are found and analyzed from measured acceleration and vertical contact force between the pan head in pantograph and contact wire in catenary system according to the driving pattern and the train raised a running speed up to 300km/h.

  • PDF

Relation and Variation Trend between the Behavior of the Pantograph vs. the Vehicle Running Speed in Korean High Speed Train (한국형 고속전철용 판토그라프의 거동 특성과 열차속도와의 상관관계와 경향)

  • 목진용;박춘수;조용현;최강윤;김기환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.170-176
    • /
    • 2003
  • The pantograph for Korean High Speed Train was developed and had been evaluating by through "G7- R&D for home grown high speed train technology". In this study, a relation in mechanical aspect between the train running speed and the current collecting performance of the pantograph is conducted.'for this study, a measuring system for current collecting performance and mechanical characteristics is developed and installed on the prototype Korean High Speed Train, and measurement is conducted while the train runs on the test track. The measuring system is composed of video monitoring system and telemetry & data processing unit. It monitors whether the hazard behavior in the pantograph is occurs or not, and measures acceleration and vertical contact force between the pan head and catenary. Through this study, evaluation of a mechanical vibration characteristics and trend of the pantograph and a interface performance of pantograph - catenary up to 200㎞/h train speed are facilitated.

  • PDF

A study on the Ride Comfort for High Speed Train on the High Speed Line/Conventional Line (고속선/기존선 연계운행에 대한 고속철도 차량의 승차감에 관한 연구)

  • 김영국;김석원;박찬경;김기환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.206-211
    • /
    • 2004
  • Recently, the ride comfort problem becomes increasingly important because of today's needs for train speedup. The concept of ride comfort is equivocal. Generally, it is defined as the body vibration. The commercial high-speed train must be run the compound line in Korea which is composed of high-speed line and conventional line. In this paper, the ride comfort has been reviewed by the various experimental methods when the high-speed train is operated on both lines. The results show that the high-speed train has no problems from the viewpoint of the comfort ride during the operation on both lines.

  • PDF

Analysis on the Current Collection Characteristics of Korean High-Speed Train in High-Speed Track and Conventional Lines (고속선 및 기존선에서 한국형 고소열차의 집전특성 분석 -판토그라프-가선 간 접촉력 경향을 중심으로-)

  • Mok Jin-Yong;Kim Young-Guk;Park Choon-Soo;Kim Ki-Hwan,;Lee Sung-Ho,
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.595-601
    • /
    • 2004
  • The pantograph for Korean High Speed Train was developed and had been evaluating by through 'G7-R&D project' for home grown high speed train technology. In this paper, from the point of view in mechanical aspect, comparison study on the current collection characteristics between the KHST pantograph and contact wire in catenary system on the High-Speed Line and Ho-Nam/Kyoung-Bu conventional lines is conducted. A measuring system for the performance and mechanical characteristics of the KHST pantograph is used for this study, which was developed and installed on the Proto-type Korean High Speed Train, and physical characteristics were measured while the KHST runs on the High-Speed Line and conventional lines. Through this study, remarkable variations of characteristics which can affect to a current collection quality of high-speed train are found and analyzed from measured mean contact forces in both tracks.

  • PDF

Analysis of Field Noise from High Speed Train Using Dedopplerization (도플러 보정을 통한 고속열차 현장 측정 소음 분석)

  • Lee, Yong Woo;Lee, Duck Joo;Kwon, Hyeok Bin;Yun, Su Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.431-437
    • /
    • 2013
  • Measured acoustic signal from operating high speed train contains frequency change called doppler shift due to its motion. To avoid this doppler shift wind tunnel test is required. But scaledown of model can cause change of source characteristics. And measurements using some part of train cannot reproduce real flow condition. The best way to recognize real noise source characteristics is measurement from operating high speed train but doppler shift makes it hard. So, we developed simple dedopplerization technique for one microphone and applied to field test data of high speed train. Through this, we could capture real frequency of noise from operating high speed train.

A Numerical Study on Aerodynamic Characteristics in Tunnel for High Speed Combi Train-HSB (여객/화물 복합열차 HSB의 터널 공력특성에 대한 시뮬레이션 연구)

  • Rho, Joo-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.54-59
    • /
    • 2014
  • The new high speed combi train prototype project was developed which named HSB. It runs over the speed of 330km/h. As the speed of the train exceeds over 300km/h, due to pressure change in tunnel, aerodynamic problems such as sudden drag increase, severe acoustic noise, passenger discomfort and tunnel pressure sonic boom were occurred. This aerodynamic characteristics in tunnel should be reviewed in early design state to enhance the performance and driving quality of new high speed train. In this paper, the aerodynamic characteristics in tunnel for HSB such as pressure waves in tunnel, a rate of pressure change in cabin and micro pressure wave that cause sonic boom outside tunnel are analyzed by 2D axisymmetric CFD simulations. The results are also compared with the value for ordinary high speed train like the KTX-Sancheon. It is helpful how to design the configuration of HSB train. Finally it shows that the HSB train was well designed in tunnel condition because all values fulfill the criterions on UIC code and Korean national regulations.