• Title/Summary/Keyword: Korean Coastal Waters

Search Result 1,453, Processing Time 0.024 seconds

Fish Fauna in Coastal Waters of Ulleungdo, Korea by SCUBA Investigation in Summer (다이빙 조사에 의한 여름철 울릉도 연안의 어류상)

  • Myoung, Jung-Goo;Park, Jeong-Ho;Cho, Sun-Hyung;Kim, Jong-Man
    • Korean Journal of Ichthyology
    • /
    • v.17 no.1
    • /
    • pp.84-87
    • /
    • 2005
  • The fish fauna was investigated in the coastal waters of Ulleungdo by SCUBA diving from 27 to 28 July 2004. We observed a total of 45 species from 22 families, including 6 species in Scorpaenidae and 5 species in Labridae. A total of 33 species were recorded at Station 1, and 15 species were recorded at Station 3. As a result of this study, we newly added 23 species to fish list in the coastal waters of Ulleungdo.

Dynamics of the Phytoplankton Community in the Coastal Waters of Chuksan Harbor, East Sea (동해 축산항 연안의 식물플랑크톤 군집 동태)

  • Kang, Yeon-Shik;Choi, Hyu-Chang;Lim, Joo-Hwan;Jeon, In-Seong;Seo, Ji-Ho
    • ALGAE
    • /
    • v.20 no.4
    • /
    • pp.345-352
    • /
    • 2005
  • In order to investigate the distribution of phytoplankton community in the coastal waters of the Chuksan Harbor, East Sea, the abundance and biomass of phytoplankton have been evaluated through seasonal interval sampling from April 2000 to October 2002. A total of 363 different phytoplankton species was observed and most of them were composed of diatoms. The mean abundance and chlorophyll-a concentration of phytoplankton during the study period ranged from 56 ${\times}$ $10^3$ to 720 ${\times}$ $10^3$ cells $L^{-1}$ and from 0.78 to 3.29 μg chl-a $L^{-1}$, respectively. The relative contribution of the size-fractionated phytoplankton to phytoplankton community showed difference according to seasons. The average contribution of nano-phytoplankton(<20 $\mu$m) was over 50% in the total abundance and biomass of the phytoplankton. Our results show that nano-phytoplankton play an important role in the southern coastal waters of the East Sea. And the environmental factors such as suspended substances, phosphates and silicates were positively correlated with the abundances and biomass of phytoplankton.

Method of Integrating Landsat-5 and Landsat-7 Data to Retrieve Sea Surface Temperature in Coastal Waters on the Basis of Local Empirical Algorithm

  • Xing, Qianguo;Chen, Chu-Qun;Shi, Ping
    • Ocean Science Journal
    • /
    • v.41 no.2
    • /
    • pp.97-104
    • /
    • 2006
  • A useful radiance-converting method was developed to convert the Landsat-7 ETM+thermal-infrared (TIR) band's radiance ($L_{{\lambda},L7/ETM+}$) to that of Landsat-5 TM TIR ($L_{{\lambda},L5/TM+})$ as: $L_{{\lambda},L5/TM}=0.9699{\times}L_{{\lambda},L7/ETM+}+0.1074\;(R^2=1)$. In addition, based on the radiance-converting equation and the linear relation between digital number (DN) and at-satellite radiance, a DN-converting equation can be established to convert DN value of the TIR band between Landsat-5 and Landsat-7. Via this method, it is easy to integrate Landsat-5 and Landsat-7 TIR data to retrieve the sea surface temperature (SST) in coastal waters on the basis of local empirical algorithms in which the radiance or DN of Lansat-5 and 7 TIR band is usually the only input independent variable. The method was employed in a local empirical algorithm in Daya Bay, China, to detect the thermal pollution of cooling water discharge from the Daya Bay nuclear power station (DNPS). This work demonstrates that radiance conversion is an effective approach to integration of Landsat-5 and Landsat-7 data in the process of a SST retrieval which is based on local empirical algorithms.

The Clarification Of Spatial-temporal Patterns of Phytoplankton From Southern Korean Coastal Waters In 2004 (2004년 한국 남해연안 해역에 출현하는 식물플랑크톤의 시.공간적 특성 조사)

  • Cho Eun-Seob;Kim Jeong-Bae;An Kyoung-Ho;Yu Jun;Kwon Jung-No;Jeong Chang-Su
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.539-562
    • /
    • 2006
  • The clarification of spatial-temporal patterns of phytoplankton from southern coastal waters during the period of March to November in 2004 was carried out. Total cell numbers were shown in 5,286 cells $ml^{-1}$ on March and reached to encounter a peak of 27,775 cells $ml^{-1}$ on July. Mean cell number was also shown in maximum of 1,587 cells $ml^{-1}$ on July, which recorded approximately two times higher than on June. The cell number of phytoplankton from southmiddle waters attained an abundance of ${\geq}35%$ regardless of months, which was the highest the abundance of phytoplankton in 2004 than any other waters in this study. Southwestern waters were lower the cell number of 2-5 times than those of southmiddle and southeastern waters. In particular, Prorocentrum occurred in southeastern waters on June and the highest cell number of 8,200 cells $ml^{-1}$ around Tongyeong region on July, which was recorded to occupy the value of 60.9% in southeast waters. The abundance of Skeletonema costatum as a dominant taxa in southwest was shown in ${\geq}60%$ on March, July, September, and October, whereas was also recorded to achieve the abundance of above 80% in southmiddle waters on March, July, and September. The majority of the taxa in southeastern waters was diatom: Eucampia zoodiacus, and Chaetoceros spp.. They occupied above 45%. On November, most of southern waters were abundant to Chaetoceros spp. On the basis of cluster analysis using SPSS ver 10.0, phytoplankton occurring on March showed somewhat no correlation with all of southern waters. In contrast to on March, the relationship between southwestern and southmiddle waters was shown on August and November, indicating a distinction from southeastern waters. However, the distance between southwestern/middle and southeastern waters appeared to be less than 5. Consequently, the abundance of phytoplankton in southern waters showed much fluctuations in temporal and spatial assays. In particular, southwestern and southmiddle waters during the periods of summer and winter appeared to be a similar to environmental characteristics.

Environmental Factors and the Distribution of Eggs and Larvae of the Anchovy (Engraulis japonica) in the Coastal Waters of Jeju Island (제주도 주변해역의 해양환경요인과 멸치 난자치어 분포)

  • Ko, Joon-Chul;Yoo, Joon-Taek;Rho, Hong-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.6
    • /
    • pp.394-410
    • /
    • 2007
  • Anchovy spawn from the end of May to mid-October, when the water temperature is $14.8-27.2\;^{\circ}C$ and the salinity is 26.0-33.6 psu. The main spawning season is between July to August, when the water temperature is $21.7-27.2\;^{\circ}C$ and the salinity is between 26.0-32.2 psu. The main spawning grounds of anchovy are coastal areas shallower than 50 m around the islands located in the Jeju Strait. Anchovy larvae are distributed near the fronts between Chuja-do, Jangsu-do, Yeoseo-do, and the open sea rather than in the spawning grounds. Anchovy eggs and larvae density increased in accordance with the high level of $Chlorophyll-{\alpha}$ during the summer season (July-August). In terms of the suspended sediment (SS) levels along the northern coast of the Jeju Strait, high densities of anchovy eggs (12.0-18.0 mg/L) were observed, mainly in the area affected by the coastal waters of the southern sea with high SS levels, while larvae (10.0-19.0 mg/L) tended to be distributed over a wide area with high SS levels, including the open sea. In terms of the dissolved oxygen (DO) content, eggs (5.4-6.8 mg/L) were observed in coastal areas with a high DO content, while larvae (4.2-6.4 mg/L) were distributed widely in areas with a relatively low DO content, from the southern coast to the open sea.

Redescription of Pontella Species (Calanoida, Pontellidae) from Korean Waters, with Notes on Their Spatio-temporal Distribution

  • Jeong, Hyeon-Gyeong;Suh, Hae-Lip;Yoon, Yang-Ho;Soh, Ho-Young
    • Ocean Science Journal
    • /
    • v.43 no.4
    • /
    • pp.209-222
    • /
    • 2008
  • To understand physical structures in the Korean waters, we investigated the spatio-temporal distribution of Pontella species known as indicator species of water mass using a David-Hempel neuston net from April 2002 to March 2003. Five Pontella species (P. chierchiae Giesbrecht, P. fera Dana, P. latifurca Chen and Zhang, P. securifer Brady and P. sinica Chen and Zhang) were found. Their abundance increased from May to October with increasing the surface water temperature. Pontella chierchiae predominantly appeared in the whole areas while P. latifurca scarcely occurred in coastal waters. The other three species (P. fera, P. securifer and P. sinica) were rarely found in the South Sea of Korea on August to September. We suggest that P. securifer and P. fera as oceanic species can play a role in an indicator species of the Tsushima Warm Current while P. sinica as Chinese coastal species is affected by the diluted waters of the Yantze River. We also provide re-description of the three species (P. chierchiae, P. fera and P. latifurca) insufficiently described and discuss their zoogeography.

A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula - Expansion of Coastal Waters and Its Effect on Temperature Variations in The South Sea of Korea - (한반도 근해의 해류와 해수 특성 -남해연안수 확장과 수온변화-)

  • NA Jung-Yul;HAN Sang-Kyu;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.4
    • /
    • pp.267-279
    • /
    • 1990
  • The temporal and spatial distribution of the coastal cold waters which was formed due to winter colling in the South Sea of Korea was analyzed by IR images from satellite and in situ data from shipboard observations. The coastal waters are known to be consisted of the Yellow Sea Coastal Waters(YSCW) and the South Korean Coastal Waters(SKCW). The former is driven around the Chuja-do and drifted into the Cheju Strait by residual currents, while the latter expands toward offsea by southward wind forcing. The expansion patterns of the SKCW were observed as sinking expansion or drifting expansion such that both were strongly dependent on the surface heat flux conditions. Under the condition of positive heat flux(warmer sea surface) or when the sea surface heat is lost to the atmosphere, the surface water started sinking and eventually expanded toward the open sea causing the cooling of the water column. For the negative heat flux the surface water was just drifted horizontally and expanded seaward and in this case only the surface layer of water was cooled.

  • PDF

Diffusion in Coastal Waters of the Yellow Sea (황해연안해성의 물질확산에 관하여)

  • 이종섭;김차겸;장선덕;김종학
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.4
    • /
    • pp.261-270
    • /
    • 1992
  • To investigate the flow patterns and diffusions in the Taean coastal waters of the eastern Yellow Sea, hydraulic and numerical experiments of tidal currents and diffusions of dye and cooling water were performed during spring tide along with field observations. Flow patterns obtained by the hydraulic and numerical experiments approximately coincide with those of the field observations. In the fold observations of tidal current, currents flow southwestward during the ebb tide, while currents flow northeastward during the flood tide. and the maximum velocity is 2.13 ㎧ toward WSW direction. The Eulerian diffusion coefficient estimated from field measmements of current is 7.82$\times$10$^{5}$ $\textrm{cm}^2$/s. Diffusion coefficients obtained from the area of dye plume in the model are given by the expression 0.18 $r^{4}$3/, and the coefficients have the range of 10$^{5}$ ~10$^{6}$ $\textrm{cm}^2$/s. These values are similar to the Eulerian diffusion coefficient estimated fram field measurements. Diffusion coefficients obtained in the hydraulic model are one to two orders higher than those obtained in the Onsan Bay in the eastern waters and two to three orders higher than those obtained in the Chinhae Bay in the southern waters of the Korean Peninsula. Diffusion patterns of cooling water by numerical experiments are similar to those of dye plume by hydraulic experiments. Both hydraulic and numerical experiment results of diffusions of dye plume and cooling water in the Taean coastal waters, have shown that the diffusion during the ebb tide is more prevalent than one during the flood tide.

  • PDF

Taxonomical Review of the Korean Labroidei (Teleostei: Perciformes) (한국산 놀래기과 어류의 분류학적 검토)

  • Kim, Byung-Jik
    • Korean Journal of Ichthyology
    • /
    • v.21 no.sup1
    • /
    • pp.74-74
    • /
    • 2009
  • The perciform suborder Labroidei comprising six families (Cichlidae, Embiotocidae, Pomacentridae, Labridae, Odacidae, and Scaridae) are characterized by having the specialized pharyngeal jaws for food processing, i.e., united fifth ceratobranchials and upper pharyngeal jaw articulating with the basicranium via diarthroses (Stiassny and Jensen, 1987). They usually inhabit in the most tropical and subtropical seas and comprise about 235 genera and roughly 2,274 species worldwide (Nelson, 2006). Concerning the Korean labroid fishes, Mori (1952) had listed 18 genera and 26 species belong to four families in his check list of Korean fishes since Jordan and Metz (1913) firstly reported six genera and seven species in only two families (Embiotocidae and Labridae). Chyung (1977) added two species, Tilapia mossambica and Cirrhilabrus temmincki, to Mori’s list and also classified them into three suborders, i.e., Embiotocina (containing only Embiotocidae), Pomacentrina (Cichlidae and Pomacentridae), and Labrina (Labridae and Scaridae). Subsequently, Lee and Kim (1996) reviewed the Korean labroidfishes taxonomically resulting in 22 genera and 32 species in five families with some taxonomical modifications including a new Korean record. It is remarkable to be added many new Korean recordsto the pomacentrids or the labrids for recent 10 years (Koh et al., 1995; Yoo et al., 1995; Koh et al., 1997; Myoung, 1997; Choi and Kim, 2000; Choi et al., 2002; Kim and Go, 2003). Recently, Kim et al. (2005) briefly described all members of the Korean Labroidei with a color photograph or a figure, recognizing 27 genera and 42 species in five families. In the present study, the current taxonomical status of the Korean labroid fishes including distributional features is summarized based both on specimens collected from the Korean waters and on literature survey to provide bio-information of the Korean native fish species. As a result, the Korean labroid fishes totally consist of 27 genera and 44 species in five families, that is, Cichlidae (1 species), Embiotocidae (3), Pomacentridae (15), Labridae (22), and Scaridae (2). They distributed mainly in the coastal waters of the South Sea, Korea, however, most pomacentrids or labrids occur in the coastal waters of Jeju Island only, although some species were observed in their larval or juvenile stages only from coastal waters of the island. Interestingly, several species are expanding their distribution north to Ulreung and Dok islands in the East Sea, Korea lately.

THE SPECTRAL SHAPE MATCHING METHOD FOR THE ATMOSPHERIC CORRECTION OF LANDSAT IMAGERY IN SAEMANGEUM COASTAL AREA

  • Min Jee-Eun;Ryu Joo-Hyung;Shanmugam P.;Ahn Yu-Hwan;Lee Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.671-674
    • /
    • 2005
  • Atmospheric correction over the ocean part is more important than that over the land because the signal from the ocean is very small about one tenth of that reflected from land. In this study, the Spectral Shape Matching Method (SSMM) developed by Ahn and Shanmugam (2004) is evaluated using Landsat imagery acquired over the highly turbid Saemangeum Coastal Area. The result of SSMM is compared with COST model developed by Chavez (1991 and 1997). In principle, SSMM is simple and easy to implement on any satellite imagery, relying on both field and image properties. To assess the potential use of these methods, several field campaigns were conducted in the Saemangeum coastal area corresponding with Landsat-7 satellite's overpass on 29 May 2005. In-situ data collected from the coastal waters of Saemangeum using optical instruments (ASD field spectroradiometer) consists of ChI, Ap, SS, aooM, F(d). In order to perform SSMM, we use the in-situ water-leaving radiance spectra from clear oceanic waters to estimate the the path radiance from total signal recorded at the top of the atmosphere (TOA), due to the reason that the shape of clear water-leaving radiance spectra is nearly stable than turbid water-leaving radiance spectra. The retrieved water-leaving radiance after subtraction of path signal from TOA signal in this way is compared with that estimated by COST model. The result shows that SSMM enabled retrieval of water-leaving radiance spectra that are consistent with in-situ data obtained from Saemangeum coastal waters. The COST model yielded significantly high errors in these areas.

  • PDF