• Title/Summary/Keyword: Korean Aquaculture

Search Result 4,139, Processing Time 0.027 seconds

Mathematical Model of Aquaculture Facility Utilization (양식장 이용에 대한 수학적 모형)

  • Eh, Youn-Yang
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.2
    • /
    • pp.444-454
    • /
    • 2014
  • The range of optimization problem in aquaculture is very wide, resulting from the range of species, mode of operation. Quite a few studies focus marine net-cages, but studies on land based culture farm are few or no. This paper considers a allocation problem to meet production planning in land based aquaculture system. A water pool allocation model in land based aquaculture system was developed. The solution finds the value of decision variable to minimize yearly production costs that sums up the water pool usage cost and sorting cost. The model inputs were (1) the fish growth rate (2) critical standing corp (3) number of water pool (4) number of fish. The model outputs were (5) number of water pool in growing phase (6) cost of cultivation (6) optimal facility allocation(number of water pool for each growing phase). To solve the problem, an efficient heuristic algorithm based on a greedy manner is developed. Branch and bound and heuristic is evaluated through numerical examples.

The Relationship between Climatic and Oceanographic Factors and Laver Aquaculture Production (기후 및 해양 요인과 김 생산량과의 관계에 관한 연구)

  • Kim, Do-Hoon
    • The Journal of Fisheries Business Administration
    • /
    • v.44 no.3
    • /
    • pp.77-84
    • /
    • 2013
  • While some steps in laver aquaculture production can be controlled artificially to a certain extent, the culturing process is largely affected by natural factors, such as the characteristics of seawater, climatic and oceanographic conditions, etc. This study aims to find a direct relationship between climatic and oceanographic factors (water temperature, air temperature, salinity, rainfall, sunshine duration and wind speed) and laver aquaculture production in Wando region, the biggest aquaculture production area of laver, located in the southwest coast of Korea using a multiple regression analysis. Despite the small sample size of a dependent variable, the goodness of model fit appeared acceptable. In addition, the R-squared value was 0.951, which means that the variables were very explanatory. Model results indicated that duration of sunshine, temperature, and rainfall during the farming period from the end of September to the end of April would be important factors affecting significantly to the laver aquaculture production.

Ordering Model of Fingerlings in Aquaculture Farm (치어 주문모형에 관한 연구)

  • Eh, Youn-Yang;Song, Dong-Hyo
    • The Journal of Fisheries Business Administration
    • /
    • v.48 no.3
    • /
    • pp.47-59
    • /
    • 2017
  • Fish mortality is the most important success factor in aquaculture management. To order fingerlings considering the effect of mortality is a important problem in aquaculture farm. This study is aimed to decision the number and size of fry in aquaculture farm. This study build the mathematical model that finds the value of decision variable to minimize total cost that sums up the fingerling purchasing cost, aquaculture farm operating cost and feeding cost under mortality constraint. The proposed mathematical model involve biological and economical variables: (1) number of fingerlings (2) fish growth rate (3) mortality (4) price of a fry (5) feeding cost, and (6) possible order period. Numerical simulation model presented here in. The objective of numerical simulation is to provide for decision makers to analyse and comprehend the proposed model. When extensive biological and cost data become available, the proposed model can be widely applied to yield more accurate results.

Cost Analysis Model according to Mortality in Land-based Aquaculture (육상수조 어류양식 생존율에 따른 비용분석모형)

  • Eh, Youn-Yang
    • The Journal of Fisheries Business Administration
    • /
    • v.47 no.4
    • /
    • pp.1-13
    • /
    • 2016
  • Fish mortality is the most important success factor in aquaculture management. To analyze the effect of mortality considering biological and economic condition is a important problem in land-based aquaculture. This study is aimed to analyze the effect of mortality for duration of cultivation in land-based aquaculture. This study builds the mathematical model that finds the value of decision variable to minimize cost that sums up the water pool usage cost, sorting cost, fingerling cost and feeding cost under critical standing corp constraint. The proposed mathematical model involves many aspects, both biological and economical: (1) number of fingerlings (2) timing and number of batch splitting event, based on (3) fish growth rate, (4) mortality, and (5) several farming expense. Numerical simulation model presented here in. The objective of numerical simulation is to provide for decision makers to analyse and comprehend the proposed model. When extensive biological and cost data become available, the proposed model can be widely applied to yield more accurate results.

The Need of Biofilter for Ammonia Removal in Recirculating Aquaculture System

  • Harwanto, Dicky;Jo, Jae-Yoon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • With the world's population increase, demands of fish production increased rapidly. Because of the demand increase, methods of aquaculture also become more intense. With the increasing intensity of aquaculture, more metabolites in the system are accumulated. The metabolites accumulated in the system turn to the causatives of water quality deterioration and become limiting factors for fish growth. Due to the toxicity of ammonia, ammonia removal is needed in aquaculture system. Biofilters, often referred as biological filter or nitrification filter are commonly used in recirculating aquaculture system to remove ammonia and convert it to nitrite, and then to nitrate.

  • PDF

Cryopreservation of Semen in Dead Yellow Croaker, Larimichthys polyactis

  • Lim, Han-Kyu;Min, Byung-Hwa;Jeong, Min-Hwan;Choi, Byul-Nim;Le, Minh Hoang;Chang, Young-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.350-353
    • /
    • 2010
  • This study demonstrated that cryopreserved semen from dead fish can be used for seedling production. Yellow croakers, Larimichthys polyactis, were killed and stored at temperatures of $20^{\circ}C$ or $0^{\circ}C$ for 6 hours. At 2 hour intervals, semen from these fish was collected using abdominal pressure and evaluated for spermatozoa motility and semen cryopreservation. Semen collected after 6 hours from dead fish stored at $0^{\circ}C$ could be cryopreserved and attained fertilization and hatching rates of $15.0{\pm}1.2%$ and $14.8{\pm}1.6%$, respectively. This study suggests that germ cells such as the semen of dead fish can be cryopreserved and utilized in the restoration of a species.

Productivity of Aquaculture Facility Utilization (양식장 이용에 따른 생산성에 관한 연구)

  • Eh, Youn-Yang
    • The Journal of Fisheries Business Administration
    • /
    • v.45 no.2
    • /
    • pp.85-95
    • /
    • 2014
  • Fish stocking is important element of land-based aquaculture management. To maintain constant stocking rate considering biological and economic condition is a convenient strategy in intensive aquaculture. This study is aimed to analyze the effect of over-stocking(more than aquaculture capacity) for certain periods of time. This study make the mathematical decision making model that finds the value of decision variable to minimize cost that sums up the water pool usage cost and sorting cost under critical standing corp constraint. The proposed mathematical decision making model was applied to 12 sample combination of sorting cost and the number of fish on the Oliver flounder culture farms. If a immature fish can be sold for high price than farming cost, restricted over-stocking resulted in a improvement of economic performance. When extensive comparable biological and market data become available, analysis model can be widely applied to yield more accurate results.

Removal of Total Suspended Solids by a Foam Fractionator in a Simulated Seawater Aquaculture System

  • Peng, Lei;Jo, Jae-Yoon
    • Journal of Aquaculture
    • /
    • v.16 no.4
    • /
    • pp.216-222
    • /
    • 2003
  • In a simulated seawater aquaculture system, effects of different operating factors like the superficial air velocity (SAY), hydraulic residence time (HRT), protein concentration and foam overflow height on the removal of total suspended solids (TSS) by a foam fractionator, with 20 cm diameter and 120 cm height, were investigated. This experiment was performed on batch and consecutive modes for different combinations of the tested factors, using synthetic wastewater. In 5 consecutive trials, TSS concentration in culture tank water decreased faster, when the foam fractionator was operated at higher SAV and lower HRT. In batch trials, with increasing SAV, TSS removal rate increased, but decreased with increasing HRT. Higher protein concentration in the bulk solution resulted in higher TSS removal rate. TSS concentration in the collected foam condensates increased but the foam overflow rate decreased with increasing foam overflow height. Foam fractionation was effective for removing TSS in seawater aquaculture systems and its performance largely depended on the operating parameters, especially superficial air velocity.

Starvation Effects on Occurrence of Tunic Softness Syndrome in Sea Squirt Halocynthia roretzi (양식 멍게(Halocynthia roretzi)의 물렁증 발생에 미치는 절식의 영향)

  • Kim, Dong Wook;Park, Jung Jun;Yang, Sung Jin;Kim, Chang Hoon;Shin, Yun Kyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.5
    • /
    • pp.575-581
    • /
    • 2013
  • We examined the effect of starvation on the occurrence of tunic softness to determine the cause of mass mortality of cultured Halocynthia roretzi (Drasche) in the Tongyeong region, Korea. In terms of the survival rate of H. roretzi and the occurrence rate of tunic softness, H. roretzi starved for 35 days at water temperatures of 8, 12, and $15^{\circ}C{\pm}0.5^{\circ}C$ (room temperature of $15^{\circ}C{\pm}1^{\circ}C$) did not exhibit tunic softness at water temperatures of either $8^{\circ}C$ or $12^{\circ}C$. for morphological changes, although the tunic of H. roretzi was shrunken and became visibly smaller with a darkening color in all experimental groups, as compared to the state prior to starvation, its tunics bulbs continuously. The ratio of RNA/DNA concentrations and protein contents for each of the tunic sections were lower in the starved group. Our results indicate that tunic softness is not related to feeding deficiency, as no histopathological symptoms were apparent in the digestive gland or tunic of H. roretzi due to starvation.

Value Chain Analysis of the Olive Flounder Paralichthys olivaceus Aquaculture Industry (넙치(Paralichthys olivaceus) 양식산업의 가치사슬 분석)

  • Nam Lee Kim;Hye Seong Kim;Do Hoon Kim;Nam Su Lee;Shin Kwon Kim;Byung Hwa Min
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.930-935
    • /
    • 2023
  • This study aimed to analyze the structure of the value chain of the olive flounder aquaculture industry to increase the value of this industry. Based on the value chain theory, olive flounder aquaculture industry activities were classified as primary and support activities. The primary activities included seed production, fish production, producer distribution, consumer distribution, and consumption. The support activities were production infrastructure, organization and specialization, R&D, and government policy. A survey was conducted on the costs of seed and fish production in the primary activities to investigate the business structure, and the distribution structure was analyzed to examine distribution costs and margins. In the support activities, the recent trends in R&D and government policy were mainly examined, based on which, a measure to reduce costs and maximize profits was suggested. It is necessary to reduce costs across the production processes by improving seed quality and reducing labor, feed, and management costs, which are strongly associated with support activities. Therefore, lowering costs will be possible in the olive flounder aquaculture industry when R&D outcomes, such as species development, feed quality improvement, and aquaculture system development, are stably diffused and applied in tandem with government policy regarding the industry.