• Title/Summary/Keyword: Korean Aquaculture

Search Result 4,126, Processing Time 0.032 seconds

Physiological Changes and Energy Budget of the Sea Squirt Halocynthia roretzi from Tongyeong, South Coast of Korea (멍게(Halocynthia roretzi)의 계절별 생리적 변화 및 에너지 수지)

  • Shin, Yun-Kyung;Jun, Je-Cheon;Kim, Eung-Oh;Hur, Young-Baek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.4
    • /
    • pp.366-371
    • /
    • 2011
  • The sea squirt Halocynthia roretzi is mainly cultured in Tongyeong, Southern coastal area of Korea. This study presents the physiological rates of respiration, excretion, feeding and assimilation efficiency of the sea squirt Halocynthia roretzi to analyze the SFG(scope for growth) and net growth efficiency, determined during 2007. Oxygen consumption and nitrogen excretion rates increased with a rise in temperature during the summer period whereas feeding rates decreased. The O:N ratio was high during winter(October to February). Assimilation efficiency showed an annual average of 75.4% during the experimental period, except during a period of elevated temperature in July to September(average $25^{\circ}C$). Net growth efficiency($K_2$) was 8.7 to 64.2% except for May to September, when temperature increased at the aquaculture farm. SFG was negative from May to September, reflecting high temperatures and low feeding rates during this period; its highest positive values occurred during winter.

Beneficial roles of Song-Gang stone as a feed additive in aquaculture: a review

  • Yoo, Gwangyeol;Abediostad, Zeinab;Choi, Wonsuk;Bae, Jinho;Choi, Youn Hee;Lee, Seunghyung;Bai, Sungchul C.
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.12
    • /
    • pp.394-399
    • /
    • 2021
  • Song-Gang® bio-stone (SGS) is a microporous crystalline hydrated aluminosilicate which has found various applications because of their very unique physiochemical characteristics such as ion exchange and absorptive-desorptive properties. Significant progress has been made in recent years on applications of these inorganic adsorbents in different industries including agriculture, aquaculture, water and wastewater treatment. This review article intends to summarize the published reports on the applications of SGS in aquaculture industry. SGS application as a feed additive to enhance fish growth and promote their health and nutritional parameters is the most important discussed areas. According to the technical data that are discussed in this review, SGS should be considered as a material with tremendous potential for application in the aquaculture industry. Considerable amounts of research works are under way to explore other opportunities for application of SGS to benefit aquaculture industry.

Economic analysis of the loading-unloading and automatic weighing systems in laver aquaculture industry (양식장 물김 이송 및 중량 자동측정 시스템 개발의 경제성 분석 연구)

  • Dae-Hyon KIM;Eun-Bi MIN;Tae-Jong KANG;Doo-Jin HWANG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.2
    • /
    • pp.181-187
    • /
    • 2023
  • Laver aquaculture, which occupies a large proportion in the aquaculture industry in Korea, is still highly dependent on human labor. Therefore, it is necessary to study the development of an automatic system to improve the working environment and increase the efficiency of aquaculture production systems. The purpose of this study is to evaluate the economic feasibility of an improved system in a study for the loading-unloading and automatic weighing systems in laver aquaculture industry. Economic analysis of the developed unloading and automatic weighing system were implemented under various conditions to calculate more accurate benefits and costs. As a result of this study, the economic feasibility was found to be very high in the three models: net present value (NPV), benefit-cost ratio (B/C), internal rate of return (IRR). Moreover, the results of sensitivity analysis showed that the economical efficiency of the automatic loading, unloading, and weighing system in laver aquaculture was very high.

Potential Influence of Climate Change on Shellfish Aquaculture System in the Temperate Region

  • Jo, Qtae;Hur, Young Baek;Cho, Kee Chae;Jeon, Chang Young;Lee, Deok Chan
    • The Korean Journal of Malacology
    • /
    • v.28 no.3
    • /
    • pp.277-291
    • /
    • 2012
  • Aquaculture is challenged by a number of constraints with future efforts towards sustainable production. Global climate change has a potential damage to the sustainability by changing environmental surroundings unfavorably. The damaging parameters identified are water temperature, sea level, surface physical energy, precipitation, solar radiation, ocean acidification, and so on. Of them, temperature, mostly temperature elevation, occupies significant concern among marine ecologists and aquaculturists. Ocean acidification particularly draws shellfish aquaculturists' attention as it alters the marine chemistry, shifting the equilibrium towards more dissolved CO2 and hydrogen ions ($H^+$) and thus influencing signaling pathways on shell formation, immune system, and other biological processes. Temperature elevation by climate change is of double-sidedness: it can be an opportunistic parameter besides being a generally known damaging parameter in aquaculture. It can provide better environments for faster and longer growth for aquaculture species. It is also somehow advantageous for alleviation of aquaculture expansion pressure in a given location by opening a gate for new species and aquaculture zone expansion northward in the northern hemisphere, otherwise unavailable due to temperature limit. But in the science of climate change, the ways of influence on aquaculture are complex and ambiguous, and hence are still hard to identify and quantify. At the same time considerable parts of our knowledge on climate change effects on aquaculture are from the estimates from data of fisheries and agriculture. The consequences may be different from what they really are, particularly in the temperature region. In reality, bivalves and tunicates hung or caged in the longline system are often exposed to temperatures higher than those they encounter in nature, locally driving the farmed shellfish into an upper tolerable temperature extreme. We review recent climate change and following environment changes which can be factors or potential factors affecting shellfish aquaculture production in the temperate region.

Nitrification efficiency of biofilters containing different filter media in simulated seawater aquaculture system

  • Lei Peng;Jo, Jae-Yoon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.203-204
    • /
    • 2003
  • Ammonia in aquaculture system may lead to suppression of fish growth, sublethal histopathological changes, and even death thus ammonia is considered toxic to fish. Tricking filter and submerged filter have many advantages include: low construction cost, easy management and maintenance, and well adaptation to different water and waste loading rates. (omitted)

  • PDF

A Study on Commercialization of Styela clava HERDMAN aquaculture Insurance (미더덕 양식보험 상품화 방안 연구)

  • SONG, Jung-Hun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.607-611
    • /
    • 2017
  • The purpose of this study is to present the concept of merchandising Styela clava HERDMAN developed in 2016. The main contents of this study are analyzing the general condition of Styela clava HERDMAN, We intend to promote stable and sustainable development of Korean aquaculture by activating the aquaculture insurance system by expanding coverage items and coverage, and increasing insurance coverage.