• Title/Summary/Keyword: Korea society

Search Result 345,847, Processing Time 0.307 seconds

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

The Intelligent Determination Model of Audience Emotion for Implementing Personalized Exhibition (개인화 전시 서비스 구현을 위한 지능형 관객 감정 판단 모형)

  • Jung, Min-Kyu;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.39-57
    • /
    • 2012
  • Recently, due to the introduction of high-tech equipment in interactive exhibits, many people's attention has been concentrated on Interactive exhibits that can double the exhibition effect through the interaction with the audience. In addition, it is also possible to measure a variety of audience reaction in the interactive exhibition. Among various audience reactions, this research uses the change of the facial features that can be collected in an interactive exhibition space. This research develops an artificial neural network-based prediction model to predict the response of the audience by measuring the change of the facial features when the audience is given stimulation from the non-excited state. To present the emotion state of the audience, this research uses a Valence-Arousal model. So, this research suggests an overall framework composed of the following six steps. The first step is a step of collecting data for modeling. The data was collected from people participated in the 2012 Seoul DMC Culture Open, and the collected data was used for the experiments. The second step extracts 64 facial features from the collected data and compensates the facial feature values. The third step generates independent and dependent variables of an artificial neural network model. The fourth step extracts the independent variable that affects the dependent variable using the statistical technique. The fifth step builds an artificial neural network model and performs a learning process using train set and test set. Finally the last sixth step is to validate the prediction performance of artificial neural network model using the validation data set. The proposed model is compared with statistical predictive model to see whether it had better performance or not. As a result, although the data set in this experiment had much noise, the proposed model showed better results when the model was compared with multiple regression analysis model. If the prediction model of audience reaction was used in the real exhibition, it will be able to provide countermeasures and services appropriate to the audience's reaction viewing the exhibits. Specifically, if the arousal of audience about Exhibits is low, Action to increase arousal of the audience will be taken. For instance, we recommend the audience another preferred contents or using a light or sound to focus on these exhibits. In other words, when planning future exhibitions, planning the exhibition to satisfy various audience preferences would be possible. And it is expected to foster a personalized environment to concentrate on the exhibits. But, the proposed model in this research still shows the low prediction accuracy. The cause is in some parts as follows : First, the data covers diverse visitors of real exhibitions, so it was difficult to control the optimized experimental environment. So, the collected data has much noise, and it would results a lower accuracy. In further research, the data collection will be conducted in a more optimized experimental environment. The further research to increase the accuracy of the predictions of the model will be conducted. Second, using changes of facial expression only is thought to be not enough to extract audience emotions. If facial expression is combined with other responses, such as the sound, audience behavior, it would result a better result.

Video Scene Detection using Shot Clustering based on Visual Features (시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법)

  • Shin, Dong-Wook;Kim, Tae-Hwan;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Video data comes in the form of the unstructured and the complex structure. As the importance of efficient management and retrieval for video data increases, studies on the video parsing based on the visual features contained in the video contents are researched to reconstruct video data as the meaningful structure. The early studies on video parsing are focused on splitting video data into shots, but detecting the shot boundary defined with the physical boundary does not cosider the semantic association of video data. Recently, studies on structuralizing video shots having the semantic association to the video scene defined with the semantic boundary by utilizing clustering methods are actively progressed. Previous studies on detecting the video scene try to detect video scenes by utilizing clustering algorithms based on the similarity measure between video shots mainly depended on color features. However, the correct identification of a video shot or scene and the detection of the gradual transitions such as dissolve, fade and wipe are difficult because color features of video data contain a noise and are abruptly changed due to the intervention of an unexpected object. In this paper, to solve these problems, we propose the Scene Detector by using Color histogram, corner Edge and Object color histogram (SDCEO) that clusters similar shots organizing same event based on visual features including the color histogram, the corner edge and the object color histogram to detect video scenes. The SDCEO is worthy of notice in a sense that it uses the edge feature with the color feature, and as a result, it effectively detects the gradual transitions as well as the abrupt transitions. The SDCEO consists of the Shot Bound Identifier and the Video Scene Detector. The Shot Bound Identifier is comprised of the Color Histogram Analysis step and the Corner Edge Analysis step. In the Color Histogram Analysis step, SDCEO uses the color histogram feature to organizing shot boundaries. The color histogram, recording the percentage of each quantized color among all pixels in a frame, are chosen for their good performance, as also reported in other work of content-based image and video analysis. To organize shot boundaries, SDCEO joins associated sequential frames into shot boundaries by measuring the similarity of the color histogram between frames. In the Corner Edge Analysis step, SDCEO identifies the final shot boundaries by using the corner edge feature. SDCEO detect associated shot boundaries comparing the corner edge feature between the last frame of previous shot boundary and the first frame of next shot boundary. In the Key-frame Extraction step, SDCEO compares each frame with all frames and measures the similarity by using histogram euclidean distance, and then select the frame the most similar with all frames contained in same shot boundary as the key-frame. Video Scene Detector clusters associated shots organizing same event by utilizing the hierarchical agglomerative clustering method based on the visual features including the color histogram and the object color histogram. After detecting video scenes, SDCEO organizes final video scene by repetitive clustering until the simiarity distance between shot boundaries less than the threshold h. In this paper, we construct the prototype of SDCEO and experiments are carried out with the baseline data that are manually constructed, and the experimental results that the precision of shot boundary detection is 93.3% and the precision of video scene detection is 83.3% are satisfactory.

Ontology-Based Process-Oriented Knowledge Map Enabling Referential Navigation between Knowledge (지식 간 상호참조적 네비게이션이 가능한 온톨로지 기반 프로세스 중심 지식지도)

  • Yoo, Kee-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.61-83
    • /
    • 2012
  • A knowledge map describes the network of related knowledge into the form of a diagram, and therefore underpins the structure of knowledge categorizing and archiving by defining the relationship of the referential navigation between knowledge. The referential navigation between knowledge means the relationship of cross-referencing exhibited when a piece of knowledge is utilized by a user. To understand the contents of the knowledge, a user usually requires additionally information or knowledge related with each other in the relation of cause and effect. This relation can be expanded as the effective connection between knowledge increases, and finally forms the network of knowledge. A network display of knowledge using nodes and links to arrange and to represent the relationship between concepts can provide a more complex knowledge structure than a hierarchical display. Moreover, it can facilitate a user to infer through the links shown on the network. For this reason, building a knowledge map based on the ontology technology has been emphasized to formally as well as objectively describe the knowledge and its relationships. As the necessity to build a knowledge map based on the structure of the ontology has been emphasized, not a few researches have been proposed to fulfill the needs. However, most of those researches to apply the ontology to build the knowledge map just focused on formally expressing knowledge and its relationships with other knowledge to promote the possibility of knowledge reuse. Although many types of knowledge maps based on the structure of the ontology were proposed, no researches have tried to design and implement the referential navigation-enabled knowledge map. This paper addresses a methodology to build the ontology-based knowledge map enabling the referential navigation between knowledge. The ontology-based knowledge map resulted from the proposed methodology can not only express the referential navigation between knowledge but also infer additional relationships among knowledge based on the referential relationships. The most highlighted benefits that can be delivered by applying the ontology technology to the knowledge map include; formal expression about knowledge and its relationships with others, automatic identification of the knowledge network based on the function of self-inference on the referential relationships, and automatic expansion of the knowledge-base designed to categorize and store knowledge according to the network between knowledge. To enable the referential navigation between knowledge included in the knowledge map, and therefore to form the knowledge map in the format of a network, the ontology must describe knowledge according to the relation with the process and task. A process is composed of component tasks, while a task is activated after any required knowledge is inputted. Since the relation of cause and effect between knowledge can be inherently determined by the sequence of tasks, the referential relationship between knowledge can be circuitously implemented if the knowledge is modeled to be one of input or output of each task. To describe the knowledge with respect to related process and task, the Protege-OWL, an editor that enables users to build ontologies for the Semantic Web, is used. An OWL ontology-based knowledge map includes descriptions of classes (process, task, and knowledge), properties (relationships between process and task, task and knowledge), and their instances. Given such an ontology, the OWL formal semantics specifies how to derive its logical consequences, i.e. facts not literally present in the ontology, but entailed by the semantics. Therefore a knowledge network can be automatically formulated based on the defined relationships, and the referential navigation between knowledge is enabled. To verify the validity of the proposed concepts, two real business process-oriented knowledge maps are exemplified: the knowledge map of the process of 'Business Trip Application' and 'Purchase Management'. By applying the 'DL-Query' provided by the Protege-OWL as a plug-in module, the performance of the implemented ontology-based knowledge map has been examined. Two kinds of queries to check whether the knowledge is networked with respect to the referential relations as well as the ontology-based knowledge network can infer further facts that are not literally described were tested. The test results show that not only the referential navigation between knowledge has been correctly realized, but also the additional inference has been accurately performed.

A Template-based Interactive University Timetabling Support System (템플릿 기반의 상호대화형 전공강의시간표 작성지원시스템)

  • Chang, Yong-Sik;Jeong, Ye-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.121-145
    • /
    • 2010
  • University timetabling depending on the educational environments of universities is an NP-hard problem that the amount of computation required to find solutions increases exponentially with the problem size. For many years, there have been lots of studies on university timetabling from the necessity of automatic timetable generation for students' convenience and effective lesson, and for the effective allocation of subjects, lecturers, and classrooms. Timetables are classified into a course timetable and an examination timetable. This study focuses on the former. In general, a course timetable for liberal arts is scheduled by the office of academic affairs and a course timetable for major subjects is scheduled by each department of a university. We found several problems from the analysis of current course timetabling in departments. First, it is time-consuming and inefficient for each department to do the routine and repetitive timetabling work manually. Second, many classes are concentrated into several time slots in a timetable. This tendency decreases the effectiveness of students' classes. Third, several major subjects might overlap some required subjects in liberal arts at the same time slots in the timetable. In this case, it is required that students should choose only one from the overlapped subjects. Fourth, many subjects are lectured by same lecturers every year and most of lecturers prefer the same time slots for the subjects compared with last year. This means that it will be helpful if departments reuse the previous timetables. To solve such problems and support the effective course timetabling in each department, this study proposes a university timetabling support system based on two phases. In the first phase, each department generates a timetable template from the most similar timetable case, which is based on case-based reasoning. In the second phase, the department schedules a timetable with the help of interactive user interface under the timetabling criteria, which is based on rule-based approach. This study provides the illustrations of Hanshin University. We classified timetabling criteria into intrinsic and extrinsic criteria. In intrinsic criteria, there are three criteria related to lecturer, class, and classroom which are all hard constraints. In extrinsic criteria, there are four criteria related to 'the numbers of lesson hours' by the lecturer, 'prohibition of lecture allocation to specific day-hours' for committee members, 'the number of subjects in the same day-hour,' and 'the use of common classrooms.' In 'the numbers of lesson hours' by the lecturer, there are three kinds of criteria : 'minimum number of lesson hours per week,' 'maximum number of lesson hours per week,' 'maximum number of lesson hours per day.' Extrinsic criteria are also all hard constraints except for 'minimum number of lesson hours per week' considered as a soft constraint. In addition, we proposed two indices for measuring similarities between subjects of current semester and subjects of the previous timetables, and for evaluating distribution degrees of a scheduled timetable. Similarity is measured by comparison of two attributes-subject name and its lecturer-between current semester and a previous semester. The index of distribution degree, based on information entropy, indicates a distribution of subjects in the timetable. To show this study's viability, we implemented a prototype system and performed experiments with the real data of Hanshin University. Average similarity from the most similar cases of all departments was estimated as 41.72%. It means that a timetable template generated from the most similar case will be helpful. Through sensitivity analysis, the result shows that distribution degree will increase if we set 'the number of subjects in the same day-hour' to more than 90%.

Personalized Recommendation System for IPTV using Ontology and K-medoids (IPTV환경에서 온톨로지와 k-medoids기법을 이용한 개인화 시스템)

  • Yun, Byeong-Dae;Kim, Jong-Woo;Cho, Yong-Seok;Kang, Sang-Gil
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.147-161
    • /
    • 2010
  • As broadcasting and communication are converged recently, communication is jointed to TV. TV viewing has brought about many changes. The IPTV (Internet Protocol Television) provides information service, movie contents, broadcast, etc. through internet with live programs + VOD (Video on demand) jointed. Using communication network, it becomes an issue of new business. In addition, new technical issues have been created by imaging technology for the service, networking technology without video cuts, security technologies to protect copyright, etc. Through this IPTV network, users can watch their desired programs when they want. However, IPTV has difficulties in search approach, menu approach, or finding programs. Menu approach spends a lot of time in approaching programs desired. Search approach can't be found when title, genre, name of actors, etc. are not known. In addition, inserting letters through remote control have problems. However, the bigger problem is that many times users are not usually ware of the services they use. Thus, to resolve difficulties when selecting VOD service in IPTV, a personalized service is recommended, which enhance users' satisfaction and use your time, efficiently. This paper provides appropriate programs which are fit to individuals not to save time in order to solve IPTV's shortcomings through filtering and recommendation-related system. The proposed recommendation system collects TV program information, the user's preferred program genres and detailed genre, channel, watching program, and information on viewing time based on individual records of watching IPTV. To look for these kinds of similarities, similarities can be compared by using ontology for TV programs. The reason to use these is because the distance of program can be measured by the similarity comparison. TV program ontology we are using is one extracted from TV-Anytime metadata which represents semantic nature. Also, ontology expresses the contents and features in figures. Through world net, vocabulary similarity is determined. All the words described on the programs are expanded into upper and lower classes for word similarity decision. The average of described key words was measured. The criterion of distance calculated ties similar programs through K-medoids dividing method. K-medoids dividing method is a dividing way to divide classified groups into ones with similar characteristics. This K-medoids method sets K-unit representative objects. Here, distance from representative object sets temporary distance and colonize it. Through algorithm, when the initial n-unit objects are tried to be divided into K-units. The optimal object must be found through repeated trials after selecting representative object temporarily. Through this course, similar programs must be colonized. Selecting programs through group analysis, weight should be given to the recommendation. The way to provide weight with recommendation is as the follows. When each group recommends programs, similar programs near representative objects will be recommended to users. The formula to calculate the distance is same as measure similar distance. It will be a basic figure which determines the rankings of recommended programs. Weight is used to calculate the number of watching lists. As the more programs are, the higher weight will be loaded. This is defined as cluster weight. Through this, sub-TV programs which are representative of the groups must be selected. The final TV programs ranks must be determined. However, the group-representative TV programs include errors. Therefore, weights must be added to TV program viewing preference. They must determine the finalranks.Based on this, our customers prefer proposed to recommend contents. So, based on the proposed method this paper suggested, experiment was carried out in controlled environment. Through experiment, the superiority of the proposed method is shown, compared to existing ways.

A Study on the Intelligent Quick Response System for Fast Fashion(IQRS-FF) (패스트 패션을 위한 지능형 신속대응시스템(IQRS-FF)에 관한 연구)

  • Park, Hyun-Sung;Park, Kwang-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.163-179
    • /
    • 2010
  • Recentlythe concept of fast fashion is drawing attention as customer needs are diversified and supply lead time is getting shorter in fashion industry. It is emphasized as one of the critical success factors in the fashion industry how quickly and efficiently to satisfy the customer needs as the competition has intensified. Because the fast fashion is inherently susceptible to trend, it is very important for fashion retailers to make quick decisions regarding items to launch, quantity based on demand prediction, and the time to respond. Also the planning decisions must be executed through the business processes of procurement, production, and logistics in real time. In order to adapt to this trend, the fashion industry urgently needs supports from intelligent quick response(QR) system. However, the traditional functions of QR systems have not been able to completely satisfy such demands of the fast fashion industry. This paper proposes an intelligent quick response system for the fast fashion(IQRS-FF). Presented are models for QR process, QR principles and execution, and QR quantity and timing computation. IQRS-FF models support the decision makers by providing useful information with automated and rule-based algorithms. If the predefined conditions of a rule are satisfied, the actions defined in the rule are automatically taken or informed to the decision makers. In IQRS-FF, QRdecisions are made in two stages: pre-season and in-season. In pre-season, firstly master demand prediction is performed based on the macro level analysis such as local and global economy, fashion trends and competitors. The prediction proceeds to the master production and procurement planning. Checking availability and delivery of materials for production, decision makers must make reservations or request procurements. For the outsourcing materials, they must check the availability and capacity of partners. By the master plans, the performance of the QR during the in-season is greatly enhanced and the decision to select the QR items is made fully considering the availability of materials in warehouse as well as partners' capacity. During in-season, the decision makers must find the right time to QR as the actual sales occur in stores. Then they are to decide items to QRbased not only on the qualitative criteria such as opinions from sales persons but also on the quantitative criteria such as sales volume, the recent sales trend, inventory level, the remaining period, the forecast for the remaining period, and competitors' performance. To calculate QR quantity in IQRS-FF, two calculation methods are designed: QR Index based calculation and attribute similarity based calculation using demographic cluster. In the early period of a new season, the attribute similarity based QR amount calculation is better used because there are not enough historical sales data. By analyzing sales trends of the categories or items that have similar attributes, QR quantity can be computed. On the other hand, in case of having enough information to analyze the sales trends or forecasting, the QR Index based calculation method can be used. Having defined the models for decision making for QR, we design KPIs(Key Performance Indicators) to test the reliability of the models in critical decision makings: the difference of sales volumebetween QR items and non-QR items; the accuracy rate of QR the lead-time spent on QR decision-making. To verify the effectiveness and practicality of the proposed models, a case study has been performed for a representative fashion company which recently developed and launched the IQRS-FF. The case study shows that the average sales rateof QR items increased by 15%, the differences in sales rate between QR items and non-QR items increased by 10%, the QR accuracy was 70%, the lead time for QR dramatically decreased from 120 hours to 8 hours.

Development of User Based Recommender System using Social Network for u-Healthcare (사회 네트워크를 이용한 사용자 기반 유헬스케어 서비스 추천 시스템 개발)

  • Kim, Hyea-Kyeong;Choi, Il-Young;Ha, Ki-Mok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.181-199
    • /
    • 2010
  • As rapid progress of population aging and strong interest in health, the demand for new healthcare service is increasing. Until now healthcare service has provided post treatment by face-to-face manner. But according to related researches, proactive treatment is resulted to be more effective for preventing diseases. Particularly, the existing healthcare services have limitations in preventing and managing metabolic syndrome such a lifestyle disease, because the cause of metabolic syndrome is related to life habit. As the advent of ubiquitous technology, patients with the metabolic syndrome can improve life habit such as poor eating habits and physical inactivity without the constraints of time and space through u-healthcare service. Therefore, lots of researches for u-healthcare service focus on providing the personalized healthcare service for preventing and managing metabolic syndrome. For example, Kim et al.(2010) have proposed a healthcare model for providing the customized calories and rates of nutrition factors by analyzing the user's preference in foods. Lee et al.(2010) have suggested the customized diet recommendation service considering the basic information, vital signs, family history of diseases and food preferences to prevent and manage coronary heart disease. And, Kim and Han(2004) have demonstrated that the web-based nutrition counseling has effects on food intake and lipids of patients with hyperlipidemia. However, the existing researches for u-healthcare service focus on providing the predefined one-way u-healthcare service. Thus, users have a tendency to easily lose interest in improving life habit. To solve such a problem of u-healthcare service, this research suggests a u-healthcare recommender system which is based on collaborative filtering principle and social network. This research follows the principle of collaborative filtering, but preserves local networks (consisting of small group of similar neighbors) for target users to recommend context aware healthcare services. Our research is consisted of the following five steps. In the first step, user profile is created using the usage history data for improvement in life habit. And then, a set of users known as neighbors is formed by the degree of similarity between the users, which is calculated by Pearson correlation coefficient. In the second step, the target user obtains service information from his/her neighbors. In the third step, recommendation list of top-N service is generated for the target user. Making the list, we use the multi-filtering based on user's psychological context information and body mass index (BMI) information for the detailed recommendation. In the fourth step, the personal information, which is the history of the usage service, is updated when the target user uses the recommended service. In the final step, a social network is reformed to continually provide qualified recommendation. For example, the neighbors may be excluded from the social network if the target user doesn't like the recommendation list received from them. That is, this step updates each user's neighbors locally, so maintains the updated local neighbors always to give context aware recommendation in real time. The characteristics of our research as follows. First, we develop the u-healthcare recommender system for improving life habit such as poor eating habits and physical inactivity. Second, the proposed recommender system uses autonomous collaboration, which enables users to prevent dropping and not to lose user's interest in improving life habit. Third, the reformation of the social network is automated to maintain the quality of recommendation. Finally, this research has implemented a mobile prototype system using JAVA and Microsoft Access2007 to recommend the prescribed foods and exercises for chronic disease prevention, which are provided by A university medical center. This research intends to prevent diseases such as chronic illnesses and to improve user's lifestyle through providing context aware and personalized food and exercise services with the help of similar users'experience and knowledge. We expect that the user of this system can improve their life habit with the help of handheld mobile smart phone, because it uses autonomous collaboration to arouse interest in healthcare.

Finding Weighted Sequential Patterns over Data Streams via a Gap-based Weighting Approach (발생 간격 기반 가중치 부여 기법을 활용한 데이터 스트림에서 가중치 순차패턴 탐색)

  • Chang, Joong-Hyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.55-75
    • /
    • 2010
  • Sequential pattern mining aims to discover interesting sequential patterns in a sequence database, and it is one of the essential data mining tasks widely used in various application fields such as Web access pattern analysis, customer purchase pattern analysis, and DNA sequence analysis. In general sequential pattern mining, only the generation order of data element in a sequence is considered, so that it can easily find simple sequential patterns, but has a limit to find more interesting sequential patterns being widely used in real world applications. One of the essential research topics to compensate the limit is a topic of weighted sequential pattern mining. In weighted sequential pattern mining, not only the generation order of data element but also its weight is considered to get more interesting sequential patterns. In recent, data has been increasingly taking the form of continuous data streams rather than finite stored data sets in various application fields, the database research community has begun focusing its attention on processing over data streams. The data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. In data stream processing, each data element should be examined at most once to analyze the data stream, and the memory usage for data stream analysis should be restricted finitely although new data elements are continuously generated in a data stream. Moreover, newly generated data elements should be processed as fast as possible to produce the up-to-date analysis result of a data stream, so that it can be instantly utilized upon request. To satisfy these requirements, data stream processing sacrifices the correctness of its analysis result by allowing some error. Considering the changes in the form of data generated in real world application fields, many researches have been actively performed to find various kinds of knowledge embedded in data streams. They mainly focus on efficient mining of frequent itemsets and sequential patterns over data streams, which have been proven to be useful in conventional data mining for a finite data set. In addition, mining algorithms have also been proposed to efficiently reflect the changes of data streams over time into their mining results. However, they have been targeting on finding naively interesting patterns such as frequent patterns and simple sequential patterns, which are found intuitively, taking no interest in mining novel interesting patterns that express the characteristics of target data streams better. Therefore, it can be a valuable research topic in the field of mining data streams to define novel interesting patterns and develop a mining method finding the novel patterns, which will be effectively used to analyze recent data streams. This paper proposes a gap-based weighting approach for a sequential pattern and amining method of weighted sequential patterns over sequence data streams via the weighting approach. A gap-based weight of a sequential pattern can be computed from the gaps of data elements in the sequential pattern without any pre-defined weight information. That is, in the approach, the gaps of data elements in each sequential pattern as well as their generation orders are used to get the weight of the sequential pattern, therefore it can help to get more interesting and useful sequential patterns. Recently most of computer application fields generate data as a form of data streams rather than a finite data set. Considering the change of data, the proposed method is mainly focus on sequence data streams.

Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization (정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적)

  • JANG, Se-In;PARK, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.53-65
    • /
    • 2019
  • Object tracking is one of important steps to achieve video-based surveillance systems. Object tracking is considered as an essential task similar to object detection and recognition. In order to perform object tracking, various machine learning methods (e.g., least-squares, perceptron and support vector machine) can be applied for different designs of tracking systems. In general, generative methods (e.g., principal component analysis) were utilized due to its simplicity and effectiveness. However, the generative methods were only focused on modeling the target object. Due to this limitation, discriminative methods (e.g., binary classification) were adopted to distinguish the target object and the background. Among the machine learning methods for binary classification, total error rate minimization can be used as one of successful machine learning methods for binary classification. The total error rate minimization can achieve a global minimum due to a quadratic approximation to a step function while other methods (e.g., support vector machine) seek local minima using nonlinear functions (e.g., hinge loss function). Due to this quadratic approximation, the total error rate minimization could obtain appropriate properties in solving optimization problems for binary classification. However, this total error rate minimization was based on a batch mode setting. The batch mode setting can be limited to several applications under offline learning. Due to limited computing resources, offline learning could not handle large scale data sets. Compared to offline learning, online learning can update its solution without storing all training samples in learning process. Due to increment of large scale data sets, online learning becomes one of essential properties for various applications. Since object tracking needs to handle data samples in real time, online learning based total error rate minimization methods are necessary to efficiently address object tracking problems. Due to the need of the online learning, an online learning based total error rate minimization method was developed. However, an approximately reweighted technique was developed. Although the approximation technique is utilized, this online version of the total error rate minimization could achieve good performances in biometric applications. However, this method is assumed that the total error rate minimization can be asymptotically achieved when only the number of training samples is infinite. Although there is the assumption to achieve the total error rate minimization, the approximation issue can continuously accumulate learning errors according to increment of training samples. Due to this reason, the approximated online learning solution can then lead a wrong solution. The wrong solution can make significant errors when it is applied to surveillance systems. In this paper, we propose an exactly reweighted technique to recursively update the solution of the total error rate minimization in online learning manner. Compared to the approximately reweighted online total error rate minimization, an exactly reweighted online total error rate minimization is achieved. The proposed exact online learning method based on the total error rate minimization is then applied to object tracking problems. In our object tracking system, particle filtering is adopted. In particle filtering, our observation model is consisted of both generative and discriminative methods to leverage the advantages between generative and discriminative properties. In our experiments, our proposed object tracking system achieves promising performances on 8 public video sequences over competing object tracking systems. The paired t-test is also reported to evaluate its quality of the results. Our proposed online learning method can be extended under the deep learning architecture which can cover the shallow and deep networks. Moreover, online learning methods, that need the exact reweighting process, can use our proposed reweighting technique. In addition to object tracking, the proposed online learning method can be easily applied to object detection and recognition. Therefore, our proposed methods can contribute to online learning community and object tracking, detection and recognition communities.