• Title/Summary/Keyword: Korea Superconducting Tokamak Advanced Research

Search Result 55, Processing Time 0.023 seconds

Variation of Residual Welding Stresses in Incoloy 908 Conduit during the Jacketing of Superconducting Cables

  • Lee, Ho-Jin;Kim, Ki-Baik;Nam, Hyun-Il
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.71-75
    • /
    • 2003
  • The conduit fer superconducting cable is welded and plastically deformed during the jacketing process to make the CICC (Cable-in-Conduit-Conductors) fer a fusion magnet. The jacketing process of KSTAR (Korea Superconducting Tokamak Advanced Research) conductors is composed of several sequential steps such as rounding, welding, sizing, and square-rolling. Since the welded zone in Incoloy 908 conduit is brittle and easy to have flaws, there may be a possibility of stress corrosion cracking during the heat treatment of coil when both the induced tensile residual stress and the concentration of oxygen in the furnace are sufficiently high. The steps of the jacketing process were simulated using the finite element method of the commercial ABAQUS code, and the stress distribution in the conduit in each step was calculated, respectively. Furthermore, the variations of residual welding stresses through the steps of the jacketing process were calculated and analyzed to anticipate the possibility of the stress corrosion cracking in the conduit. The concentrated high tensile residual welding stresses along the welding bead decrease by the plastic deformation of the following sizing step. The distribution in residual stresses in the conductor for magnet coil is mainly governed by the last step of square-rolling.

Calculation of DC resistance of strand-to-strand joints for KSTAR (KSTAR 용 소선-소선 접합부의 직류저항 계산)

  • Ho-Jin Lee;Hyun-Il Nam;Ki-Baik Kim;Gye-Won Hong
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.104-110
    • /
    • 2001
  • Since the strand-to-strand type joint far CICC (Cable-In-Conduit Conductor) is small in size and has low DC resistance, it is expected to be useful type fur a superconducting magnet system which had a compact structure like the KSTAR (Korea Superconducting Tokamak Advanced Research) coil system. The DC resistance is changed according to the distribution patterns of strands in cables connected together in the joint. A commercial code was used for the calculation of the DC resistance. With the decrease of outer diameter of the Joint, Which means the increase of strand volume fraction in the joint, the calculated DC resistance decrease rapidly and non-lineally. The variation of resistance depends mainly on the volume fraction of solder which has higher resistivity than copper. The resistance decrease inversely with the increase of the length of the joint. The resistance increase with increase of number of triplets in each stack contacted with that of another terminal cable. In case of the strand-to-strand joint that has 62mm of outer diameter, 52mm of inner diameter, 100mm of overlap length, and four triplets in each stack, the calculated DC resistance is less than 1 n-Ohm.

  • PDF

Development of the Welded Bellows for KSTAR Vacuum Vessel (KSTAR 진공용기용 용접 Bellows 개발)

  • Her, N.I.;Kim, B.C.;Kim, G.H.;Hong, G.H.;Sa, J.W.;Kim, H.K.;Kim, K.M.;Bak, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1098-1102
    • /
    • 2003
  • Vacuum vessel of the KSTAR(Korea Superconducting Tokamak Advanced Research) tokamak is a fully welded structure with D-shaped cross-section. According to the requirements of the physics design, sixteen horizontal ports, sixteen slanted ports, sixteen baking and cooling ports, and twenty-four top and bottom vertical ports are designed for the diagnostics, plasma heating, vacuum pumping, and baking and cooling. Bellows on these ports are used for flexible components to absorb the relative displacement due to the vacuum vessel thermal expansion and the electromagnetic force between the vacuum vessel and the cryostat ports. Fatigue strength evaluation was performed to decide the dimension of the bellows. In order to assure the quality of the bellows, a prototype bellows for the neutral beam injection port has been fabricated and tested prior to main fabrication. It was conformed that the prototype bellows has sufficient fatigue strength and vacuum reliability in the expected load conditions.

  • PDF

Development of Real Time Calorimetry System for Neutral Beam (중성입자 빔의 실시간 열량 측정시스템 개발)

  • Seo, Min-Seok;Yoon, Byeong-Joo;Oh, Byung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1702-1703
    • /
    • 2007
  • KSTAR(Korea Superconducting Tokamak Advanced Research)의 보조 가열장치 중에 하나인 중성입자 빔 가열장치의 열량을 실시간으로 측정할 수 있는 시스템을 개발하였다. 실시간으로 열량을 측정하기위해 중성입자 빔 발생장치의 말단에 위치한 열량계(Calorimeter)의 냉각수 입 출구 온도를 온도센서 중의 하나인 열전대를 이용하여 측정하고 이를 열량 측정을 위해 개발한 알고리듬을 이용하여 실시간으로 중성입자 빔의 열량으로 연산한다. 연산된 열량은 사용자 인터페이스 화면에 출력하여 매 실험마다 열량계에 입사된 열량을 실시간으로 확인이 가능하도록 하였다.

  • PDF

Discharge Characteristics of a KSTAR NBI Ion Source

  • Chang Doo-Hee;Oh Byung-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.226-233
    • /
    • 2003
  • The discharge characteristics of a prototype ion source was investigated, which was developed and upgraded for the NBI (Neutral Beam Injection) heating system of KSTAR (Korea Superconducting Tokamak Advanced Research). The ion source was designed for the arc discharge of magnetic bucket chamber with multi-pole cusp fields. The ion source was discharged by the emission-limited mode with the control of filament heating voltage. The maximum ion density was 4 times larger than the previous discharge controlled by a space-charge-limited mode with fully heated filament. The plasma (ion) density and arc current were proportional to the filament voltage, but the discharge efficiency was inversely proportional to the operating pressure of hydrogen gas. The maximum ion density and arc current were obtained with constant arc voltage ($80{\sim}100V$), as $8{\times}10^{11}cm^{-3}$ and 1200 A, respectively. The estimated maximum beam current was about 35 A, extracted by the accelerating voltage of 80kV.

Equivalent Mechanical and Thermal Properties of Multiphase Superconducting Coil Using Finite Element Analysis (유한요소해석을 이용한 다상의 초전도 코일에 대한 기계적 열적 등가 물성)

  • Sa, J.W.;Her, N.I.;Choi, C.H.;Oh, Y.K.;Cho, S.;Do, C.J.;Kwon, M.;Lee, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.975-980
    • /
    • 2001
  • Like composite material. the coil winding pack of the KSTAR (Korea Superconducting Tokamak Advanced Research) consist of multiphase element such as metallic jacket material for protecting superconducting cable, vacuum pressurized imprepregnated (VPI) insulation, and corner roving filler. For jacket material, four CS (Central Solenoid) Coils, $5^{th}$ PF (Poloidal Field) Coil, and TF (Toroidal Field Coil) use Incoloy 908 and $6-7^{th}$ PF coil, Cold worked 316LN. In order to analyze the global behavior of large coil support structure with coil winding pack, it is required to replace the winding pack to monolithic matter with the equivalent mechanical properties, i.e. Young's moduli, shear moduli due to constraint of total nodes number and element numbers. In this study, Equivalent Young's moduli, shear moduli, Poisson's ratio, and thermal expansion coefficient were calculated for all coil winding pack using Finite Element Method.

  • PDF

Numerical analysis about current non-uniformity in superconducting CICC (cable-in-conduit conductor) joint (초전도 관내연선도체 접합부에서의 전류 불균일에 대한 수치적 분석)

  • Lee, Sang-Il;Jeong, Sang-Kwon;Choi, Sung-Min;Park, Kap-Rai
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.41-45
    • /
    • 2007
  • This paper presents transport current non-uniformity in a joint for superconducting multistage cable-in-conduit conductor (CICC) and relaxation in the CICC. The joint is considered to have a current loop linked to an external magnetic field so that it becomes an emf voltage source. It is numerically analyzed using an electrical transmission line model. The inductive current in a resistive joint is compared to that of a non-resistive joint when the ramping field is applied vertically to the joints. Regarding the parameter values of the model. a full scale $Nb_3Sn$ CICC and a strand-to-strand (STS) joint for the toroidal field magnet of the KSTAR (Korea Superconducting Tokamak Advanced Research) device are referenced to. It is found that the resistive joint prevents the current from rising too much and enhances decaying the current when the ramping stops. The 'flattop' current is found to be proportional to the ramp rate of the field (dB/dt). The relaxation length, which is defined as the length within which the maximum induced current falls by 1/e. is found to saturate within 0.27m.

Operation result of the Cryogenic and Mechanical Measurement System for KSTAR (KSTAR 저온 및 구조 계측 시스템 운전 결과)

  • Kim, Y.O.;Chu, Y.;Yonekawa, H.;Bang, E.N.;Lee, T.G.;Baek, S.H.;Hong, J.S.;Lee, S.I.;Park, K.R.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.26-30
    • /
    • 2009
  • Korea Superconducting Tokamak Advanced Research(KSTAR) device is composed of 30 superconducting magnets, magnet structure, vacuum vessel, cryostat, current feeder system, and etc. KSTAR device is operated in the cryogenic temperature and high magnetic field. We install about 800 sensors - temperature sensors, stain gages, displacement gages, hall sensors - to monitor the thermal, mechanical, electrical status of KSTAR during operation. As a tremendous numbers of sensors should be installed for monitoring the KSTAR device, the method of effective installation was developed. The sensor test was successfully carried out to check its reliability and its reproduction in the cryogenic temperature. The sensor signal is processed by PXI-based DAQ system and communicated with central control system via machine network and is shown by Operator Interface(OPI) display in the main control room. In order to safely operate the device, any violations of mechanical & superconductive characteristic of the device components were informed to its operation system & operator. If the monitored values exceed the pre-set values, the protective action should be taken against the possible damage. In this paper, the system composition, operation criteria, operation result were presented.

Test of the KSTAR Prototype Toroidal Field Coil (KSTAR 프로토 타입 TF 코일 테스트)

  • Chu, Y.;Lee, S.;Park, K.;Baek, S.;Chung, W.;Lim, B.;Park, H.;Oh, O.K.;Kim, K.
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.307-310
    • /
    • 2003
  • The KSTAR (Korea Superconducting Tokamak Advanced Research) prototype TF (Toroidal Field) coil was tested in the superconducting coil test facility in KBSI (Korea basic Science Institute). The test was divided into several campaigns according to the objectives. The objectives of the first campaign were to cool the coil into operating temperature and to find any defect in the coil such as cold leaks. From the results of the first campaign, which was carried out during Jan. 2003, any defect in the TF prototype coil was not found. At the second campaign, the large-current charging experiment was one of the major issues, and was carried out during Aug. 2003 In this paper, the test preparation, and the test results of the second campaign were presented.

  • PDF

Stress analysis of the KSTAR vacuum vessel under thermal and electromagnetic loads (KSTAR 진공용기 열 및 전자기력 하중에 의한 응력해석)

  • Cho, S.;Kim, J.B.;Her, N.I.;Im, K.H.;Sa, J.W.;Yu, I.K.;Kim, Y.C.;Do, C.J.;Kwon, M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.325-330
    • /
    • 2001
  • One of the principal components of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak structure is the vacuum vessel, which acts as the high vacuum boundary for the plasma and also provides the structural support for internal components. Hyundai Heavy Industries Inc. has performed the engineering design of the vacuum vessel. Here the overall configuration of the KSTAR vacuum vessel was briefly described and then the design methodology and the analysis results were presented. The vacuum vessel consists of double walls, several ports, leaf spring style supports. Double walls are separated by reinforcing ribs and filled with baking/shielding water. The overall external dimensions of the main body are 3.39 m high, 1.11 m inner radius, 2.99 m outer radius, and made of SA240-316LN. The vacuum vessel was designed to be capable of achieving the base pressure of $1\times10^{-8}$ Torr, and also to be structurally capable of sustaining the vacuum pressure, the electromagnetic and thermal loads during plasma disruption and bakeout, respectively. The vacuum vessel will be baked out maximum $150^{\circ}C$ by hot pressurized water through the channels formed between double walls and the reinforcing ribs. A 3-D temperature distribution and the resulting thermal loads in the vessel were calculated during bakeout. It was found that the vacuum vessel and its supports were structurally rigid based on the thermal stress analysis. The maximum electromagnetic loads on the vacuum vessel induced by eddy and halo currents resulting from the engineering plasma radial and vertical disruption scenarios have been estimated. The stress analyses have been performed based on these electromagnetic loads and the resulting stresses at he critical locations of the vacuum vessel were within the allowable stresses.

  • PDF