• Title/Summary/Keyword: Korea Red Ginseng (Panax ginseng)

Search Result 184, Processing Time 0.03 seconds

Comparative Cytotoxic Activities of Various Ginsengs on Human Cancer Cell Lines

  • Sung Ryong Ko;You
    • Journal of Ginseng Research
    • /
    • v.22 no.1
    • /
    • pp.18-21
    • /
    • 1998
  • Comparative cytotoxic activities of petroleum ether soluble fraction from various ginsengs of Panax species were evaluated using A549 (human lung adenocarcinoma) and SK-OV-3(human ovary carcinoma) cancer cell lines. Korean red ginseng, Korean white ginseng, American ginseng and Canadian ginseng were found to show more potent cytotoxicitles on A549 and SK-OV-3 cell lines than Chinese red ginseng, Japanese red ginseng and Sanchi ginseng. It is noteworthy that especially, red ginseng prepared from the root of Panax ginseng cultivated in Korea shows relatively stronger cytotoxic activities than those cultivated in China and Japan.

  • PDF

Ginsenoside $Rf_{2}$ , a New Dammarane Glycoside from Korean Red Ginseng(Panax ginseng)

  • Park, Jong-Dae;Lee, You-Hui;Kim, Shin-Il
    • Archives of Pharmacal Research
    • /
    • v.21 no.5
    • /
    • pp.615-617
    • /
    • 1998
  • A new dammarane glycoside named ginsenoside $Rf_{2}$ has been isolated from Korean red ginseng (Panax ginseng) and its chemical structure has been elucidated as $6-O-[{\alpha}-L-rham-nopyranosyl (1{\rightarrow}2){\beta}-D-glucopyranosyl]$$dammarane-3{\beta}, 6{\alpa}, 12{\beta}$, 20(R), 25-pentol by chemical and spectral methods.

  • PDF

Comparative Study on the Essential Oil Components of Panax Species (인삼속(Pauax species) 식물의 정유성분 조성 비교)

  • Ko, Sung-Ryong;Choi, Kang-Ju;Kim, Young-Hoi
    • Journal of Ginseng Research
    • /
    • v.20 no.1
    • /
    • pp.42-48
    • /
    • 1996
  • This study was carried out to determine the differences of essential oil components among Korean, Chinese and Japanese red ginseng, and Korean white ginseng (Panax ginseng C.A Mayer) , American and Canadian ginseng (P. Quinquefolium), and sanchi ginseng (P notoginseng). The steam distilled oils of these ginsengs were analyzed by GC and GC-MS, and 22 sesquiterpenes, 8 sesquiterpene alcohols, 8 monoterpenes, 5 aldehydes, 4 esters, 3 acids, 2 alcohols and 5 miscellaneous components were identified. The major oil components of Korean, Chinese and Japanese red ginseng were $\beta$-panasinsene, $\beta$-caryophyllene, $\alpha$-panasinsene, $\alpha$-neoclovene, selina-4,11-diane, bicyclo-ger-macrene and spathulenol. The contents of $\beta$-panasinsene, $\alpha$-neoclovene, $\alpha$-basabolene and spathulenol were higher in Korean red ginseng than Chinese and Japanese red ginseng. The contents of $\alpha$-cubebene, selina-4,11-diene and ledol were higher in Chinese red ginseng than Korean and Japanese red ginseng, but those of selina-4,11-diene and spathulenol were lower in Japanese red ginseng than Korean or Chinese red ginseng. On the other hand, the GC patterns of the oils from American, Canadian and sanchi ginseng were different from that of Korean white ginseng.

  • PDF

Isolation of Polypeptide Fractions from Different Park offered Ginseng

  • Larina, Ludmila;Muranova, T.;Cho, B.G.;Park, H.
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.160-167
    • /
    • 1998
  • Chemical studies of nitrogen compounds of Panax ginseng seem relatively rare, Probably due to the isolation difficulties, subsequently the investigations of biological activities are little. The experimental conditions were established for highly complete extraction of peptides (basic, acidic and neutral) from Panax ginseng. This task was achieved by applying the follow isolation procedure: 1 , the sequential extraction with water, 0.1% TFA in 20% acetonitril and buffer pH 6.5 (water-pyridine-acetic acid 100:3:900) : 2, fractionation by ultrafiltration : 3, n-butanol extraction 4, cation- and anion-exchange chromatography : 5, chromato-electrophoresis. The comparison of red ginseng (xylem Sl pith part) and red ginseng inside white (xylem Sc pith part) was also provided. To analyze the peptide mixture the chromato-electrophoresis method of separation was applied. Optimal conditions for peptides mapping of sample were explored. Our experiments revealed the quantitative difference of peptide between xylem & pith and phloem & cortex part. We have also found the qualitative difference in the composition of polypeptides between normal red ginseng (xylem Sc pith part) and red ginseng inside-white (xylem St pith part)

  • PDF

Pattern-Analysis of Panax ginseng Polysaccharide (고려인삼 다당류의 패턴-분석)

  • Han, Yong-Nam;Kim, Sun-Young;Lee, Hee-Joo;Hwang, Woo-Ik;Han, Byung-Hoon
    • Journal of Ginseng Research
    • /
    • v.16 no.3
    • /
    • pp.217-221
    • /
    • 1992
  • Total polysaccharide contents in Panax ginseng roots were evaluated by a spectrophotometry, utilizing the complex formation of ginseng polysaccharide with alcian blue dye in 50 mM ammonium biphosphate, pH 4.2. The total polysaccharide content in red ginseng was about three times higher than that in fresh ginseng when both were extracted with water, and was increased about two times when red ginseng was extracted with an alkaline solution. The determination of total polysaccharide in various parts of ginseng revealed that main roots contained the component more than fine roots. Fresh ginseng sections stained by the dye showed polysaccharide mainly found in cortex and cambium but not in epidermis. Pattern-analysis on total and acidic polysaccharides from fresh and red ginsengs exhibited that the chemical compositions of the polysaccharides extracted from both ginsengs quite differed from each other.

  • PDF

Comparative studies on the Chemical Components in Ginseng The ginsenosides and the free sugars content of various ginseng plants. (각국삼 성분 비교 연구)

  • Kim, Man-Uk;Lee, Jong-Suk;Choe, Gang-Ju
    • Journal of Ginseng Research
    • /
    • v.6 no.2
    • /
    • pp.138-142
    • /
    • 1982
  • The composition and concentration of ginsenosides and the free sugars in panax ginseng(Korea ginseng), panax quinquefolium (American ginseng) and panax pseudoginseng var. notoginseng (Sanchi ginseng), were investigated. The major ginsenosides and the order of their amount in panax ginseng are Rbl, Rc Rgl, Re, Rb2 Rd and these are about 90% of total ginsenosides, but major ginsenosides of American and Snachi ginseng art Rbl, Re, Rg1 (about 91% of total) ansi Rgl, Rbl, Re (about 93% of total) respectively. Sanchi ginseng was observed in higher concentration of panaxatriol than panaxadiol unlike panax and American ginseng. Free sugars in white ginseng are fructose, glucose, maltose and sucrose. Whereas, in red ginseng rhamnose and xylose were also detected as free sugar.

  • PDF

The Physicochemical Properties of Crude Polysaccharide Fraction Isolated from Korean Ginseng (Panax ginseng C.A. Meyer) (고려인삼에서 분리한 조다당체 획분의 이화학적 특성)

  • Kwak, Yi-Seong;Kim, Eun-Mi
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.389-392
    • /
    • 1996
  • Crude polysaccharide fractions were isolated from white ginseng and red ginseng (Panax ginseng). The amount of crude polysaccharide fraction in red ginseng was higher than that of white ginseng. The glucose contents of crude polysaccharide fraction isolated from white ginseng and red ginseng were determined as 95.1% and 89.9% by HPLC, respectively. Method of carbazole-sulfuric acid was applied to determine the amount of acidic polysaccharide in white ginseng and red ginseng. The amount of acidic polysaccharide in red ginseng was higher than that of white ginseng. Whereas, contents of minerals (Cu, Zn, Fe, Mg) in crude polysaccharide fraction from white ginseng were higher than those of crude Polysaccharide fraction from red ginseng.

  • PDF

Immunomodulatory Effect of Acidic Polysaccharide Fraction from Korean Red Ginseng (Panax ginseng)

  • Park, Kyeong-Mee;Jeong, Tae-Cheon;Kim, Young-Sook;Shin, Han-Jae;Nam, Ki-Yeul;Park, Jong-Dae
    • Natural Product Sciences
    • /
    • v.6 no.1
    • /
    • pp.31-35
    • /
    • 2000
  • Effects of red ginseng acidic polysaccharides (RGAP) on immune system were studied. The proliferation of spleen cells was induced by RGAP treatment per se. Cotreatment of lipopolysaccharide $(100\;{\mu}g/ml)$ or concanavalin A $(1\;{\mu}g/ml)$ with RGAP further stimulated the spleen cell proliferation. BALB/c mice treated with RGAP showed a slight splenic hyperplasia and increased antibody forming cell response to sheep red blood cells. Flow cytometry analysis revealed an influx of macrophages in the mice treated with RGAP.

  • PDF

In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng

  • In, Gyo;Ahn, Nam-Geun;Bae, Bong-Seok;Lee, Myoung-Woo;Park, Hee-Won;Jang, Kyoung Hwa;Cho, Byung-Goo;Han, Chang Kyun;Park, Chae Kyu;Kwak, Yi-Seong
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.361-369
    • /
    • 2017
  • Background: The chemical constituents of Panax ginseng are changed by processing methods such as steaming or sun drying. In the present study, the chemical change of Panax ginseng induced by steaming was monitored in situ. Methods: Samples were separated from the same ginseng root by incision during the steaming process, for in situ monitoring. Sampling was sequentially performed in three stages; FG (fresh ginseng) ${\rightarrow}$ SG (steamed ginseng) ${\rightarrow}$ RG (red ginseng) and 60 samples were prepared and freeze dried. The samples were then analyzed to determine 43 constituents among three stages of P. ginseng. Results: The results showed that six malonyl-ginsenoside (Rg1, Rb1, Rb3, Rc, Rd, Rb2) and 15 amino acids were decreased in concentration during the steaming process. In contrast, ginsenoside-Rh1, 20(S)-Rg2, 20(S, R)-Rg3 and Maillard reaction product such as AF (arginine-fructose), AFG (arginine-fructose-glucose), and maltol were newly generated or their concentrations were increased. Conclusion: This study elucidates the dynamic changes in the chemical components of P. ginseng when the steaming process was induced. These results are thought to be helpful for quality control and standardization of herbal drugs using P. ginseng and they also provide a scientific basis for pharmacological research of processed ginseng (Red ginseng).

Influence of Panax ginseng formulation on skin microbiota: A randomized, split face comparative clinical study

  • Hou, Joon Hyuk;Shin, Hyunjung;Shin, Hyeji;Kil, Yechan;Yang, Da Hye;Park, Mi Kyeong;Lee, Wonhee;Seong, Jun Yeup;Lee, Seung Ho;Cho, Hye Sun;Yuk, Soon Hong;Lee, Ki Yong
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.296-303
    • /
    • 2022
  • Background: Skin microbiota is important for maintenance of skin homeostasis; however, its disturbance may cause an increase in pathogenic microorganisms. Therefore, we aimed to develop a red ginseng formulation that can selectively promote beneficial bacteria. Methods: The effects of red ginseng formulation on microorganism growth were analyzed by comparing the growth rates of Staphylococcus aureus, S. epidermidis, and Cutibacterium acnes. Various preservatives mixed with red ginseng formulation were evaluated to determine the ideal composition for selective growth promotion of S. epidermidis. Red ginseng formulation with selected preservative was loaded into a biocompatible polymer mixture and applied to the faces of 20 female subjects in the clinical trial to observe changes in the skin microbiome. Results: Red ginseng formulation promoted the growth of S. aureus and S. epidermidis compared to fructooligosaccharide. When 1,2-hexanediol was applied with red ginseng formulation, only S. epidermidis showed selective growth. The analysis of the release rates of ginsenoside-Rg1 and -Re revealed that the exact content of Pluronic F-127 was around 11%. The application of hydrogel resulted in a decrease in C. acnes in all subjects. In subjects with low levels of S. epidermidis, the distribution of S. epidermidis was significantly increased with the application of hydrogel formulation and total microbial species of subjects decreased by 50% during the clinical trial. Conclusion: We confirmed that red ginseng formulation with 1,2-hexanediol can help maintain skin homeostasis through improvement of skin microbiome.