• Title/Summary/Keyword: Korea Land Data Assimilation System

Search Result 48, Processing Time 0.044 seconds

Estimation of Grid-Scale Common Land Model Using Assimilation System (자료동화기법에 근거한 격자 기반 Common Land Model의 적용성)

  • Kim, Da-Eun;Choi, Min-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.350-353
    • /
    • 2011
  • 전 세계적으로 기후변화로 인한 자연재해가 빈번하게 발생함에 따라 수자원 분야에서 또한 환경의 변화에 대한 정확한 예측이 더욱 요구되고 있다. 국내에서도 이를 위하여 다양한 방법을 통하여 연구가 이루어지고 있으나 본 연구에서 사용된 Common Land Model (CLM)은 국내에서의 실질적인 적용이 아직 부족하다. 이 모형은 Soil-Vegetation-Atmosphere Transfer 모형 중 대표적 모델로 Land Surface Model (LSM), Biosphere-Atmosphere Transfer Scheme (BATS), Chinese Academy of Sciences Institute of Atmospheric Physics LSM의 세 모형이 결합되어 발전하였다. CLM의 강제입력자료로는 위성, 지면모형 등을 기반으로 만들어진 자료를 제공하는 Korea Land Data Assimilation Systme (KLDAS; 한반도지표자료동화체계)의 격자화 된 자료를 사용하여 모형에 강제시켰다. KLDAS는 기존의 Land Data Assimilation System (LDAS)에서 발전한 형태로 동아시아 지역을 대상으로 자료를 제공하고 있으며, 본 연구에서는 이 자료를 사용하여 국내 전반에 걸쳐 격자에 대한 수문 기상학적 인자를 산출하였다.

  • PDF

Interactions between Soil Moisture and Weather Prediction in Rainfall-Runoff Application : Korea Land Data Assimilation System(KLDAS) (수리 모형을 이용한 Korea Land Data Assimilation System (KLDAS) 자료의 수문자료에 대한 영향력 분석)

  • Jung, Yong;Choi, Minha
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.172-172
    • /
    • 2011
  • The interaction between land surface and atmosphere is essentially affected by hydrometeorological variables including soil moisture. Accurate estimation of soil moisture at spatial and temporal scales is crucial to better understand its roles to the weather systems. The KLDAS(Korea Land Data Assimilation System) is a regional, specifically Korea peninsula land surface information systems. As other prior land data assimilation systems, this can provide initial soil field information which can be used in atmospheric simulations. For this study, as an enabling high-resolution tool, weather research and forecasting(WRF-ARW) model is applied to produce precipitation data using GFS(Global Forecast System) with GFS embedded and KLDAS soil moisture information as initialization data. WRF-ARW generates precipitation data for a specific region using different parameters in physics options. The produced precipitation data will be employed for simulations of Hydrological Models such as HEC(Hydrologic Engineering Center) - HMS(Hydrologic Modeling System) as predefined input data for selected regional water responses. The purpose of this study is to show the impact of a hydrometeorological variable such as soil moisture in KLDAS on hydrological consequences in Korea peninsula. The study region, Chongmi River Basin, is located in the center of Korea Peninsular. This has 60.8Km river length and 17.01% slope. This region mostly consists of farming field however the chosen study area placed in mountainous area. The length of river basin perimeter is 185Km and the average width of river is 9.53 meter with 676 meter highest elevation in this region. We have four different observation locations : Sulsung, Taepyung, Samjook, and Sangkeug observatoriesn, This watershed is selected as a tentative research location and continuously studied for getting hydrological effects from land surface information. Simulations for a real regional storm case(June 17~ June 25, 2006) are executed. WRF-ARW for this case study used WSM6 as a micro physics, Kain-Fritcsch Scheme for cumulus scheme, and YSU scheme for planetary boundary layer. The results of WRF simulations generate excellent precipitation data in terms of peak precipitation and date, and the pattern of daily precipitation for four locations. For Sankeug observatory, WRF overestimated precipitation approximately 100 mm/day on July 17, 2006. Taepyung and Samjook display that WRF produced either with KLDAS or with GFS embedded initial soil moisture data higher precipitation amounts compared to observation. Results and discussions in detail on accuracy of prediction using formerly mentioned manners are going to be presented in 2011 Annual Conference of the Korean Society of Hazard Mitigation.

  • PDF

Calculation of Soil Moisture and Evapotranspiration for KLDAS(Korea Land Data Assimilation System) using Hydrometeorological Data Set (수문기상 데이터 세트를 이용한 KLDAS(Korea Land Data Assimilation System)의 토양수분·증발산량 산출)

  • PARK, Gwang-Ha;LEE, Kyung-Tae;KYE, Chang-Woo;YU, Wan-Sik;HWANG, Eui-Ho;KANG, Do-Hyuk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.65-81
    • /
    • 2021
  • In this study, soil moisture and evapotranspiration were calculated throughout South Korea using the Korea Land Data Assimilation System(KLDAS) of the Korea-Land Surface Information System(K-LIS) built on the basis of the Land Information System (LIS). The hydrometeorological data sets used to drive K-LIS and build KLDAS are MERRA-2(Modern-Era Retrospective analysis for Research and Applications, version 2) GDAS(Global Data Assimilation System) and ASOS(Automated Synoptic Observing System) data. Since ASOS is a point-based observation, it was converted into grid data with a spatial resolution of 0.125° for the application of KLDAS(ASOS-S, ASOS-Spatial). After comparing the hydrometeorological data sets applied to KLDAS against the ground-based observation, the mean of R2 ASOS-S, MERRA-2, and GDAS were analyzed as temperature(0.994, 0.967, 0.975), pressure(0.995, 0.940, 0.942), humidity (0.993, 0.895, 0.915), and rainfall(0.897, 0.682, 0.695), respectively. For the hydrologic output comparisons, the mean of R2 was ASOS-S(0.493), MERRA-2(0.56) and GDAS (0.488) in soil moisture, and the mean of R2 was analyzed as ASOS-S(0.473), MERRA-2(0.43) and GDAS(0.615) in evapotranspiration. MERRA-2 and GDAS are quality-controlled data sets using multiple satellite and ground observation data, whereas ASOS-S is grid data using observation data from 103 points. Therefore, it is concluded that the accuracy is lowered due to the error from the distance difference between the observation data. If the more ASOS observation are secured and applied in the future, the less error due to the gridding will be expected with the increased accuracy.

Validation of Energy and Water Fluxes Using Korea Land Data Assimilation and Flux Tower Measurement: Haenam KoFlux Site's Hydro-Environment Analysis (Flux Tower 관측자료와 KLDAS를 이용한 Soil-Vegetation-Atmosphere Transfer 모형의 적용:해남 KoFlux 지점의 수문순환 환경분석에 대하여)

  • Kim, Daeun;Lim, Yoon Jin;Lee, Seung Oh;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.285-291
    • /
    • 2011
  • Accurate assessment of the water and energy cycles is essential to understand hydrologic, climatologic, and ecological processes. Common Land Model (CLM) is one of the well-developed Soil-Vegetation-Atmosphere Transfer (SVAT) models based on the water and energy balance equation for accurate prediction of hydro-environmental cycles. The CLM can estimate realistic and reliable results using relatively simple parameters. It has been widely used in the world, however in Korea practical applications of the CLM are rare due to lack of information and input data. In this study, the CLM with Korea Flux network (KoFlux) and Kore Land Data Assimilation System (KLDAS) data were individually validated for domestic applications. This study showed that all comparisons between observations and model results from KoFlux and KLDAS had reasonable correlation with determination coefficient of 0.73~1.00 via regression. The results confirmed the applicability of the CLM and the possibility of the KLDAS usage for the region where input data are not existed.

Evaluation of Evapotranspiration Estimation using Korea Land Data Assimilation System (실측 기반의 한반도지표자료동화체계를 이용하여 추정된 증발산 평가)

  • Lim, Yoon-Jin;Byun, Kun-Young;Lee, Tae-Young;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.298-306
    • /
    • 2010
  • In this study, we evaluated the performance of Korea Land Data Assimilation System (KLDAS) for the estimation of evapotranspiration (ET) by comparing the modeled against the observed ET at Gwangneung deciduous forest of KoFlux site (GDK) from 2006 to 2008. Although the magnitudes of ET by KLDAS overestimated the observed ET, the seasonal patterns of KLDAS ET were comparable with the correlation coefficient of 0.78. The difference between the KLDAS ET and the observed ET was larger in spring and summer due to rapid plant growth and frequent rainfalls with high cloud cover, respectively. Compared to the ET estimated by NASA Global Land Data Assimilation System (GLDAS) with $0.25^{\circ}$ and $1^{\circ}$ resolution, the ET by KLDAS with 10 km resolution showed better agreement with the observation at the GDK site. Albeit further improvement is necessary, our results suggest that KLADS can be used as a practical tool to map ET and to examine its spatiotemporal variability over the Korean Peninsula.

A Numerical Study of Mesoscale Model Initialization with Data Assimilation

  • Min, Ki-Hong
    • Journal of the Korean earth science society
    • /
    • v.35 no.5
    • /
    • pp.342-353
    • /
    • 2014
  • Data for model analysis derived from the finite volume (fv) GCM (Goddard Earth Observing System Ver. 4, GEOS-4) and the Land Data Assimilation System (LDAS) have been utilized in a mesoscale model. These data are tested to provide initial conditions and lateral boundary forcings to the Purdue Mesoscale Model (PMM) for a case study of the Midwestern flood that took place from 21-23 May 1998. The simulated results with fvGCM and LDAS soil moisture and temperature data are compared with that of ECMWF reanalysis. The initial conditions of the land surface provided by fvGCM/LDAS show significant differences in both soil moisture and ground temperature when compared to ECMWF control run, which results in a much different atmospheric state in the Planetary Boundary Layer (PBL). The simulation result shows that significant changes to the forecasted weather system occur due to the surface initial conditions, especially for the precipitation and temperature over the land. In comparing precipitation, moisture budgets, and surface energy, not only do the intensity and the location of precipitation over the Midwestern U.S. coincide better when running fvGCM/LDAS, but also the temperature forecast agrees better when compared to ECMWF reanalysis data. However, the precipitation over the Rocky Mountains is too large due to the cumulus parameterization scheme used in the PMM. The RMS errors and biases of fvGCM/LDAS are smaller than the control run and show statistical significance supporting the conclusion that the use of LDAS improves the precipitation and temperature forecast in the case of the Midwestern flood. The same method can be applied to Korea and simulations will be carried out as more LDAS data becomes available.

Improving streamflow prediction with assimilating the SMAP soil moisture data in WRF-Hydro

  • Kim, Yeri;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.205-205
    • /
    • 2021
  • Surface soil moisture, which governs the partitioning of precipitation into infiltration and runoff, plays an important role in the hydrological cycle. The assimilation of satellite soil moisture retrievals into a land surface model or hydrological model has been shown to improve the predictive skill of hydrological variables. This study aims to improve streamflow prediction with Weather Research and Forecasting model-Hydrological modeling system (WRF-Hydro) by assimilating Soil Moisture Active and Passive (SMAP) data at 3 km and analyze its impacts on hydrological components. We applied Cumulative Distribution Function (CDF) technique to remove the bias of SMAP data and assimilate SMAP data (April to July 2015-2019) into WRF-Hydro by using an Ensemble Kalman Filter (EnKF) with a total 12 ensembles. Daily inflow and soil moisture estimates of major dams (Soyanggang, Chungju, Sumjin dam) of South Korea were evaluated. We investigated how hydrologic variables such as runoff, evaporation and soil moisture were better simulated with the data assimilation than without the data assimilation. The result shows that the correlation coefficient of topsoil moisture can be improved, however a change of dam inflow was not outstanding. It may attribute to the fact that soil moisture memory and the respective memory of runoff play on different time scales. These findings demonstrate that the assimilation of satellite soil moisture retrievals can improve the predictive skill of hydrological variables for a better understanding of the water cycle.

  • PDF

Merging technique for evapotranspiration based on in-situ, satellite, and reanalysis data using modifed KGE fusion method (수정된 KGE 방법을 활용한 지점, 인공위성, 재분석 자료 기반 증발산 융합 기술)

  • Baik, Jongjin;Jeong, Jaehwan;Park, Jongmin;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.61-70
    • /
    • 2019
  • The modified Kling-Gupta efficiency fusion method to merge actual evapotranspiration was proposed and compared with the simple Taylor skill's score method using Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MODIS Global Evapotranspiration Project (MOD16), and the flux tower on three different land cover types over the Korean peninsula and China. In the results of the weights estimated from two actual evapotranspiration merging techniques (i.e., STS and KGF), the weights of reanalysis data (i.e, GLDAS and GLEAM) in cropland and grassland showed similar performance, while the results of weights are different according to the merging techniques in forest. Both two merging techniques showed better results than original dataset in grassland and forest. However, there were no improvement in cropland compared to the other land cover types. The results of the KGF method slightly improved compared to those of the STS in grassland and forest.

Assimilation of Satellite-Based Soil Moisture (SMAP) in KMA GloSea6: The Results of the First Preliminary Experiment (기상청 GloSea의 위성관측 기반 토양수분(SMAP) 동화: 예비 실험 분석)

  • Ji, Hee-Sook;Hwang, Seung-On;Lee, Johan;Hyun, Yu-Kyung;Ryu, Young;Boo, Kyung-On
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.395-409
    • /
    • 2022
  • A new soil moisture initialization scheme is applied to the Korea Meteorological Administration (KMA) Global Seasonal forecasting system version 6 (GloSea6). It is designed to ingest the microwave soil moisture retrievals from Soil Moisture Active Passive (SMAP) radiometer using the Local Ensemble Transform Kalman Filter (LETKF). In this technical note, we describe the procedure of the newly-adopted initialization scheme, the change of soil moisture states by assimilation, and the forecast skill differences for the surface temperature and precipitation by GloSea6 simulation from two preliminary experiments. Based on a 4-year analysis experiment, the soil moisture from the land-surface model of current operational GloSea6 is found to be drier generally comparing to SMAP observation. LETKF data assimilation shows a tendency toward being wet globally, especially in arid area such as deserts and Tibetan Plateau. Also, it increases soil moisture analysis increments in most soil levels of wetness in land than current operation. The other experiment of GloSea6 forecast with application of the new initialization system for the heat wave case in 2020 summer shows that the memory of soil moisture anomalies obtained by the new initialization system is persistent throughout the entire forecast period of three months. However, averaged forecast improvements are not substantial and mixed over Eurasia during the period of forecast: forecast skill for the precipitation improved slightly but for the surface air temperature rather degraded. Our preliminary results suggest that additional elaborate developments in the soil moisture initialization are still required to improve overall forecast skills.

Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Soil Moisture Data Assimilation Scheme (Sentinel-1A/B SAR와 토양수분자료동화기법을 이용한 고해상도 토양수분 산정)

  • Kim, Sangwoo;Lee, Taehwa;Chun, Beomseok;Jung, Younghun;Jang, Won Seok;Sur, Chanyang;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.11-20
    • /
    • 2020
  • We estimated the spatio-temporally distributed soil moisture using Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images and soil moisture data assimilation technique in South Korea. Soil moisture data assimilation technique can extract the hydraulic parameters of soils using observed soil moisture and GA (Genetic Algorithm). The SWAP (Soil Water Atmosphere Plant) model associated with a soil moisture assimilation technique simulates the soil moisture using the soil hydraulic parameters and meteorological data as input data. The soil moisture based on Sentinel-1A/B was validated and evaluated using the pearson correlation and RMSE (Root Mean Square Error) analysis between estimated soil moisture and TDR soil moisture. The soil moisture data assimilation technique derived the soil hydraulic parameters using Sentinel-1A/B based soil moisture images, ASOS (Automated Synoptic Observing System) weather data and TRMM (Tropical Rainfall Measuring Mission)/GPM (Global Precipitation Measurement) rainfall data. The derived soil hydrological parameters as the input data to SWAP were used to simulate the daily soil moisture values at the spatial domain from 2001 to 2018 using the TRMM/GPM satellite rainfall data. Overall, the simulated soil moisture estimates matched well with the TDR measurements and Sentinel-1A/B based soil moisture under various land surface conditions (bare soil, crop, forest, and urban).