• Title/Summary/Keyword: Korea Coastal Current

Search Result 601, Processing Time 0.035 seconds

Physical properties of Southeastern Yellow Sea Mud (SEYSM): Comparison with the East Sea and the South Sea mudbelts of Korea (황해 남동부 니질대의 물리적 성질: 동해 및 남해 니질대와의 비교)

  • Kim, Dae-Choul;Kim, Shin-Jeong;Seo, Young-Kyo;Jung, Ja-Hun;Kim, Yang-Eun;Kim, Gil-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.335-345
    • /
    • 2000
  • Physical and acoustic properties of the Southeastern Yellow Sea Mud (SEYSM) of Korea were studied by using 10 piston cores. The data were also compared with mudbelt sediments in the South Sea and the East Sea (southeastern inner shelf) of Korea. The sediments were mainly composed of homogeneous silt. Sandy mud and mud were minor components. The major source of sediment in the study area is probably the Keum River. Finegrained sediments discharged from the river are transported southward by coastal current, resulting in a gradual southward increase in porosity and a decrease in wet bulk density and sound velocity. The mean grain size especially appears to be the most important variable to determine the physical properties and velocity. The variations of physical properties with burial depth are dependent more strongly on sediment texture (especially, silt content) than compaction and/or consolidation. Correlations between the physical properties and the sediment texture show slight deviations from those of the East Sea and the South Sea of Korea in spite of similar pattern within the limiting values. This is probably due to the differences in silt contents, sedimentary environments, mineral compositions, and gas contents.

  • PDF

The Research on the Management Plan of Geological Heritage in Korea using GIS (지리정보를 활용한 한국의 지질유산 정보화 구축 및 관리방안 제시)

  • Lee, SooJae;Lee, MoungJin
    • Journal of Environmental Policy
    • /
    • v.14 no.4
    • /
    • pp.103-123
    • /
    • 2015
  • To provide effective management policy of geo-heritages, concept of Korean geo-heritage has been organized based on geo-diversity, geo-conservation, geo-tourism, and earth-heritage. In addition, current status of geo-heritage in Korea has been grasped, and categorized. In case GPS (Global Positioning System) coordinates exist, spatial information was constructed as GIS (Geographic Information System). Geo-heritages were classified into a total of six categories of natural monument, scenic site, coastal sand-dune, natural cave, world nature heritage, and other types of geo-heritage. By mapping 991 geo-heritages scattered nationwide using geographical information, all statuses can now be readily identified and enable the analysis of the distribution tendencies and correlation with topography. This study was aimed at searching the political connection based on quantitatively organized and analyzed geo-heritages, which have not been mapped thus far. In addition, this study organized data that have existed only in literature, and presented example verification. Moreover, these can be used as guidelines for the future search, discovery, registration and management of geo-heritage. If additional geo-heritages are discovered in field studies or with satellite images, then more correlations may be identified and help facilitate the research on geo-heritages management plans.

  • PDF

An Evaluation and Suggestion of Photovoltaic Power Plant Locations based on Environmental and Social Impacts, and Sustainability (환경적.사회적 영향을 고려한 태양광발전소의 기존 입지 타당성 평가 및 지속가능한 입지 제안)

  • Park, Yoo-Min;Kim, Young-Ho
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.437-455
    • /
    • 2012
  • Korea has recently constructed a number of renewable photovoltaic power plants in Jeolla province as an effort to provide environment-friendly energy. However, several problems appeared in the power plant locations because they were not appropriately chosen ignoring social-environmental perspectives. Consequently, locations of both currently existing photovoltaic power plants require an social and environmental evaluations. This study aims to provide appropriate photovoltaic power plants locations and evaluation of current photovoltaic power plants in Jeolla province. By presenting location analysis of photovoltaic power plants, this study would minimize environmental and social side effects regarding photovoltaic power plants. Kriging and Analytic Network Process (ANP) are applied as methodology. ANP generates correct weights in combining spatial data, so that the result would present optimal locations. In addition environmentally sensitive regions were excluded in the analysis process. The results show that South and West coastal areas have a number of appropriate locations for photovoltaic power plants. In addition, evaluating currently running photovoltaic power plant locations, total 23 out 81 are turned out to be inappropriately located. This study is expected to contribute avoiding social and environmental conflicts in photovoltaic power plant locations and present criteria in evaluating photovoltaic power plants.

  • PDF

A Study on the Selection of Target Ship for the Protection of Submarine Power Cable (해저 동력케이블 보호를 위한 대상 선박 선정에 관한 연구)

  • Lee, Yun-sok;Kim, Seungyeon;Yu, Yungung;Yun, Gwi-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.662-669
    • /
    • 2018
  • Recently, the installation of submarine power cables is under consideration due to the increase of electric power usage and the development of the offshore wind farm in island areas, including Jeju. In order to protect power cables installed on the seabed, it is necessary to calculate the burial depth based on the characteristics of anchoring, dragging and fishing, etc. However, there is no design standard related to the size of target ships to protect the cables in Korea. In this study, we analyzed the design standards for the protection of domestic submarine pipelines similar to submarine cables, and developed the risk matrix based on the classification by emergency anchoring considering the installation environment, then designed the size of target ships according to the cumulative function scale by ship size sailing through the sea concerned. Also, we linked marine accident conditions, such as anchoring, dragging, etc. and the environmental conditions such as current, sea-area depth of installation etc. to the criteria of the protection of submarine cable, and examined the size of specific target ships by dividing the operating environment of ships into harbor, coastal and short sea. To confirm the adequacy and availability of the size of target ships, we verified this result by applying to No. 3 submarine power cables, which is to be installed in the section from Wando to Jeju Island. This result is expected to influence in the development of a protection system for submarine cables and pipelines as well as the selection of anchor weight according to the determination of burial depth.

Hydraulic Experiment for Pollutant Discharge Characteristics in a Wolseong Nuclear Power Plant Port (월성원자력발전소의 항내 오염물 유출 특성에 관한 수리실험)

  • Yang, Byung-Mo;Min, Byung-Il;Park, Kihyun;Kim, Sora;Lee, Jung Lyul;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.113-122
    • /
    • 2016
  • In this study, the dispersion process of pollutant substances in a port under wave and current environments was evaluated by a hydraulic experiment. Once the contaminants washed ashore into the port of Wolseong nuclear power plant, transport processes of pollutants were investigated by tracking the tracer according to the variations of experimental condition through a hydraulic experiment. Several hydraulic experiments were performed to analyze the pollutant discharge rate of the surface coming from the different coastal environments. From the hydraulic experiment results, the tracer concentration decreased exponentially. These results suggested that, after the tracer was transported to the open sea, a different gradient was shown under different conditions. For the case of a diluted condition, the half-life of flow rate was 2.70, 10.40, and 26.39 days for 30, 20 and 10 rpm in the left-side, respectively. The decrease of the tracer concentration under conditions of 30 rpm was much faster than that under conditions of 10 rpm. For the wave condition, the half-life of flow rate was 4.59 and 15.35 days for the right and left side of the port in a hydraulic scale prototype, respectively.

Current Status and Results of In-orbit Function, Radiometric Calibration and INR of GOCI-II (Geostationary Ocean Color Imager 2) on Geo-KOMPSAT-2B (정지궤도 해양관측위성(GOCI-II)의 궤도 성능, 복사보정, 영상기하보정 결과 및 상태)

  • Yong, Sang-Soon;Kang, Gm-Sil;Huh, Sungsik;Cha, Sung-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1235-1243
    • /
    • 2021
  • Geostationary Ocean Color Imager 2 (GOCI-II) on Geo-KOMPSAT-2 (GK2B)satellite was developed as a mission successor of GOCI on COMS which had been operated for around 10 years since launch in 2010 to observe and monitor ocean color around Korean peninsula. GOCI-II on GK2B was successfully launched in February of 2020 to continue for detection, monitoring, quantification, and prediction of short/long term changes of coastal ocean environment for marine science research and application purpose. GOCI-II had already finished IAC and IOT including early in-orbit calibration and had been handed over to NOSC (National Ocean Satellite Center) in KHOA (Korea Hydrographic and Oceanographic Agency). Radiometric calibration was periodically conducted using on-board solar calibration system in GOCI-II. The final calibrated gain and offset were applied and validated during IOT. And three video parameter sets for one day and 12 video parameter sets for a year was selected and transferred to NOSC for normal operation. Star measurement-based INR (Image Navigation and Registration) navigation filtering and landmark measurement-based image geometric correction were applied to meet the all INR requirements. The GOCI2 INR software was validated through INR IOT. In this paper, status and results of IOT, radiometric calibration and INR of GOCI-II are analysed and described.

Proposal for the groundwater based countermeasures to secure water resources considering regional characteristics of water resources vulnerable areas (국내 수자원 이용 취약지역의 지역 특성을 고려한 지하수 기반 수자원 확보 방안 제시)

  • Kim, Geon;Lee, Jae-Beom;Agossou, Amos;Yang, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.191-203
    • /
    • 2022
  • This study is a follow-up study of vulnerable areas according to the vulnerability assessment of groundwater resource management in Korea. In this study, an optimal operation plan for groundwater resource management was proposed for areas vulnerable to groundwater resource management in Korea derived from previous studies. Prior to presenting the optimal operation plan for groundwater resource management, this study grasped the current status of changes in groundwater level and seawater penetration area for vulnerable areas using MODFLOW, a groundwater flow analysis program. As a result of the analysis using basic data for 10 years from 2009 to 2018, the groundwater level fell and the sea infiltration area increased. The final purpose of this study, the optimal operation plan for groundwater resource management, was selected as a total of four alternatives that can be expected to have positive effects to increase groundwater level and reduce seawater penetration. As a result of analyzing the amount of change in groundwater level and seawater penetration by applying the selected optimal operation plan, positive effects were found in all methods. It is expected that the optimal operation plan for groundwater resource management proposed in this study will be applied not only to vulnerable areas of groundwater resources in Korea but also to areas requiring development to establish efficient groundwater resource management measures.

Prediction of Potential Species Richness of Plants Adaptable to Climate Change in the Korean Peninsula (한반도 기후변화 적응 대상 식물 종풍부도 변화 예측 연구)

  • Shin, Man-Seok;Seo, Changwan;Lee, Myungwoo;Kim, Jin-Yong;Jeon, Ja-Young;Adhikari, Pradeep;Hong, Seung-Bum
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.562-581
    • /
    • 2018
  • This study was designed to predict the changes in species richness of plants under the climate change in South Korea. The target species were selected based on the Plants Adaptable to Climate Change in the Korean Peninsula. Altogether, 89 species including 23 native plants, 30 northern plants, and 36 southern plants. We used the Species Distribution Model to predict the potential habitat of individual species under the climate change. We applied ten single-model algorithms and the pre-evaluation weighted ensemble method. And then, species richness was derived from the results of individual species. Two representative concentration pathways (RCP 4.5 and RCP 8.5) were used to simulate the species richness of plants in 2050 and 2070. The current species richness was predicted to be high in the national parks located in the Baekdudaegan mountain range in Gangwon Province and islands of the South Sea. The future species richness was predicted to be lower in the national park and the Baekdudaegan mountain range in Gangwon Province and to be higher for southern coastal regions. The average value of the current species richness showed that the national park area was higher than the whole area of South Korea. However, predicted species richness were not the difference between the national park area and the whole area of South Korea. The difference between current and future species richness of plants could be the disappearance of a large number of native and northern plants from South Korea. The additional reason could be the expansion of potential habitat of southern plants under climate change. However, if species dispersal to a suitable habitat was not achieved, the species richness will be reduced drastically. The results were different depending on whether species were dispersed or not. This study will be useful for the conservation planning, establishment of the protected area, restoration of biological species and strategies for adaptation of climate change.

Summer Hydrographic Features of the East Sea Analyzed by the Optimum Multiparameter Method (OMP 방법으로 분석한 하계 동해의 수계 특성)

  • Kim, Il-Nam;Lee, Tong-Sup
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.581-594
    • /
    • 2004
  • CREAHS II carried out an intensive hydrographic survey covering almost entire East Sea in 1999. Hydrographic data from total 203 stations were released to public on the internee. This paper summarized the results of water mass analysis by OHP (Optimum Multiparameter) method that utilizes temperature, salinity, dissolved oxygen, pH, alkalinity, silicate, nitrate, phosphate and location data as an input data-matrix. A total of eight source water types are identified in the East Sea: four in surface waters(North Korea Surface Water, Tatar Surface Cold Water, East Korean Coastal Water, Modified Tsushima Surface Water), two intermediate water types (Tsushima Middle Water, Liman Cold Water), two deep water types (East Sea Intermediate Water, East Sea Proper Water). Of these NKSW, MTSW and TSCW are the newly reported as the source water type. Distribution of each water types reveals several few interesting hydrographic features. A few noteworthy are summarized as follows: The Tsushima Warm Current enter the East Sea as three branches; East Korea Coastal Water propagates north along the coast around $38^{\circ}N$ then turns to northeastward to $42^{\circ}N$ and moves eastward. Cold waters of northern origin move southward along the coast at the subsurface, which existence the existence of a circulation cell at the intermediate depth of the East Sea. The estimated volume of each water types inferred from the OMP results show that the deep waters (ESIW + ESPW) fill up ca. 90% of the East Sea basins. Consequently the formation and circulation of deep waters are the key factors controlling environmental condition of the East Sea.

Geo-educational Values of the Jebudo Geosite in the Hwaseong Geopark, Korea (화성 지질공원 제부도 지질명소의 지질교육적 가치)

  • Ha, Sujin;Chae, Yong-Un;Kang, Hee-Cheol;Kim, Jong-Sun;Park, Jeong-Woong;Shin, Seungwon;Lim, Hyoun Soo;Cho, Hyeongseong
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.311-324
    • /
    • 2021
  • Recently, ten geosites have been considered in Hwaseong for endorsement as national geoparks, including the Jebudo, Gojeongri Dinosaur Egg Fossils, and Ueumdo geosites. The Jebudo geosite in the southern part of the Seoul metropolitan area has great potential for development as a new geoscience educational site because it has geological, geographical (landscape), and ecological significance. In this study, we described the geological characteristics through field surveys in the Jebudo geosite. We evaluated its potential as a geo-education site based on comparative analysis with other geosites in Hwaseong Geopark. In addition, we reviewed the practical effect of field education at geosites on the essential concepts and critical competence-oriented education emphasized in the current 2015 revised science curriculum. The Jebudo Geosite is geologically diverse, with various metamorphic rocks belonging to the Precambrian Seosan Group, such as quartzite, schist, and phyllite. Various geological structures, such as clastic dikes, faults, joints, foliation, and schistosity have also been recorded. Moreover, coastal geological features have been observed, including depositional landforms (gravel and sand beaches, dunes, and mudflats), sedimentary structures (ripples), erosional landforms (sea cliffs, sea caves, and sea stacks), and sea parting. The Jebudo geosite has considerable value as a new geo-education site with geological and geomorphological distinction from the Gojeongri Dinosaur Egg Fossils and Ueumdo geosites. The Jebudo geosite also has opportunities for geo-education and geo-tourism, such as mudflat experiences and infrastructures, such as coastal trails and viewing points. This geosite can help develop diverse geo-education programs that improve key competencies in the science curriculum, such as critical thinking, inquiry, and problem-solving. Furthermore, by conducting optimized geo-education focused on the characteristics of each geosite, the following can be established: (1) the expansion of learning space from school to geopark, (2) the improvement of understanding of specific content elements and linkage between essential concepts, and (3) the extension of the education scope throughout the earth system. There will be positive impacts on communication, participation, and lifelong learning skills through geopark education.